[Redis]——缓存击穿和缓存穿透及解决方案(图解+代码+解释)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: [Redis]——缓存击穿和缓存穿透及解决方案(图解+代码+解释)

一、缓存击穿(热点Key问题)

  • 个人理解:

       这里先提前说一下,热点Key问题不考虑缓存穿透了,也就是不考虑命中空缓存了,因为这种一般用于活动秒杀,这些热点Key都是提前存储好的(貌似是这样的,我也不太确定~~)

1.1 问题描述

   经常被查询的一个Key突然失效或者宕机了,导致重建缓存,由于是热点Key,所以有不断的线程来查和重建缓存,导致大量数据到达数据库,这种我们称为缓存击穿

1.2 解决方案及逻辑图

   1.2.1 互斥锁

解释:

   如果未命中缓存,先获取互斥锁,获取锁之后要再次检查缓存,如果还是未命中进行缓存重建,这样当其他线程来的时候就会获取锁失败,这时我们让这个线程休眠一会,重新查询缓存,如果命中就返回嘛,如果没命中再次尝试获取锁,假设这次获取锁成功了,还是再次检查缓存,如果未命中重建缓存。

优点:可保证数据高一致性

缺点:性能低,可能发生死锁

🦈->逻辑图

🦈->上代码

   public Shop solveCacheMutex(Long id){
        // 查询redis中有无数据
        String key = "cache:shop:" + id;
        String shopCache = stringRedisTemplate.opsForValue().get(key);
        if(StrUtil.isNotBlank(shopCache)){
            // 命中缓存
            return JSONUtil.toBean(shopCache, Shop.class);
        }
        // 判断缓存穿透问题 - shopCaache如果为“” 命中空缓存 如果为null 需要查询数据库
        if(shopCache != null){
            // 命中空缓存
            return null;
        }
        // 2.1未命中缓存 尝试获取互斥锁
        String lockKey = "lock:shop:" + id;
        Shop shop = null;
        try {
            boolean lock = tryLock(lockKey);
            if(!lock){
                // 获取锁失败
                Thread.sleep(50);
                return solveCacheMutex(id);
            }
            // 获取锁成功
            // 再次检查Redis是否有缓存
            shopCache = stringRedisTemplate.opsForValue().get(key);
            if(StrUtil.isNotBlank(shopCache)){
                return JSONUtil.toBean(shopCache, Shop.class);
            }
            // 查询数据库
            shop = getById(id);
            // 店铺不存在
            if(shop == null){
                // 将空值写入Redis
                stringRedisTemplate.opsForValue().set(key, "", RedisConstants.CACHE_NULL_TTL, TimeUnit.MINUTES);
                return null;
            }
            // 存储Redis
            stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop), RedisConstants.CACHE_SHOP_TTL, TimeUnit.MINUTES);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        } finally {
            // 释放互斥锁
            unLock(lockKey);
        }
        return shop;
    }
   1.2.2 逻辑过期

解释:

   为缓存key设置逻辑过期时间(就是加一个字段),假设线程1查询缓存,未命中直接返回,命中判断是否过期发现,没过期也好说直接返回数据就行,已过期,就会尝试获取锁,然后此刻开启新的线程进行缓存重建,线程1返回旧数据,其他线程获取锁失败都返回旧数据。

优点:性能高

缺点:数据可能不一致,实现复杂

🐟->逻辑图

🐟->上代码

    private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
    public Shop solveCacheLogicalExpire(Long id){
        // 查询redis中有无数据
        String key = "cache:shop:" + id;
        String shopCache = stringRedisTemplate.opsForValue().get(key);
        if(StrUtil.isBlank(shopCache)){
            // 未命中返回null
            return null;
        }
        // 命中缓存 检查是否过期
        // 未过期 直接返回 注意这里类型转换
        RedisData redisData = JSONUtil.toBean(shopCache, RedisData.class);
        JSONObject jsonObject = (JSONObject) redisData.getData(); // 此处是将Bean对象转ObjectJson
        Shop shop = JSONUtil.toBean(jsonObject, Shop.class);
        LocalDateTime expireTime = redisData.getExpireTime();
        if(expireTime.isAfter(LocalDateTime.now())){
            return shop;
        }
        // 过期
        // 获取锁
        String lockKey = "lock:shop:" + id;
        boolean lock = tryLock(lockKey);
        if(lock){
            // 成功
            // 再次检查Redis缓存是否逻辑过期
            if(expireTime.isAfter(LocalDateTime.now())){
                // 没过期
                return shop;
            }
            // 再次检查过期
            // 开启新线程
            CACHE_REBUILD_EXECUTOR.submit(()->{
                try {
                    // 重建缓存
                    this.saveShop2Redis(id, 20L);
                } catch (Exception e) {
                    throw new RuntimeException(e);
                } finally {
                    unLock(lockKey);
                }
            });
 
        }
        // 返回数据
        return shop;
    }
 
    public void saveShop2Redis(Long id, Long expireSeconds){
        RedisData redisData = new RedisData();
        Shop shop = getById(id);
        redisData.setData(shop);
        redisData.setExpireTime(LocalDateTime.now().plusSeconds(expireSeconds));
        stringRedisTemplate.opsForValue().set(RedisConstants.CACHE_SHOP_KEY + id, JSONUtil.toJsonStr(redisData));
    }

获取锁和释放锁逻辑

    private boolean tryLock(String key){
        Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
        return BooleanUtil.isTrue(flag);
    }
    // 释放锁
    private void unLock(String key){
        stringRedisTemplate.delete(key);
    }

二、缓存穿透

2.1 问题描述

查询的Key压根不存在,所以每次都未命中缓存,直接到数据库,这我们称为缓存穿透。

2.2 解决方案逻辑图

方案① 缓存空对象

方案② 布隆过滤器

2.2.1 缓存空对象

这里原理就不说了,只说下优缺点。然后上代码

  1. 优点:实现简单,维护方便
  2. 缺点:占内存,可能造成短期数据不一致

上代码

    public Shop solveCacheThrow(Long id){
        // 查询redis中有无数据
        String key = "cache:shop:" + id;
        String shopCache = stringRedisTemplate.opsForValue().get(key);
        if(StrUtil.isNotBlank(shopCache)){
            // 命中缓存
            return JSONUtil.toBean(shopCache, Shop.class);
        }
        // 解决缓存穿透问题 - shopCaache如果为“” 命中空缓存 如果为null 查询数据库
        if(shopCache != null){
            // 命中空缓存
            return null;
        }
 
        // 查询数据库
        Shop shop = getById(id);
        // 店铺不存在
        if(shop == null){
            // 将空值写入Redis
            stringRedisTemplate.opsForValue().set(key, "", RedisConstants.CACHE_NULL_TTL, TimeUnit.MINUTES);
            return null;
        }
 
        // 存储Redis
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop), RedisConstants.CACHE_SHOP_TTL, TimeUnit.MINUTES);
        return shop;
    }
2.2.2 布隆过滤器

布隆过滤器俺不会~~~

我只知道他是根据一个算法算出来数据库有没有存储该key对应数据,但是放行可能也没数据。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
16天前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
17天前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构
|
25天前
|
缓存 NoSQL Redis
Redis 缓存使用的实践
《Redis缓存最佳实践指南》涵盖缓存更新策略、缓存击穿防护、大key处理和性能优化。包括Cache Aside Pattern、Write Through、分布式锁、大key拆分和批量操作等技术,帮助你在项目中高效使用Redis缓存。
138 22
|
24天前
|
缓存 NoSQL 中间件
redis高并发缓存中间件总结!
本文档详细介绍了高并发缓存中间件Redis的原理、高级操作及其在电商架构中的应用。通过阿里云的角度,分析了Redis与架构的关系,并展示了无Redis和使用Redis缓存的架构图。文档还涵盖了Redis的基本特性、应用场景、安装部署步骤、配置文件详解、启动和关闭方法、systemctl管理脚本的生成以及日志警告处理等内容。适合初学者和有一定经验的技术人员参考学习。
121 7
|
28天前
|
存储 缓存 监控
利用 Redis 缓存特性避免缓存穿透的策略与方法
【10月更文挑战第23天】通过以上对利用 Redis 缓存特性避免缓存穿透的详细阐述,我们对这一策略有了更深入的理解。在实际应用中,我们需要根据具体情况灵活运用这些方法,并结合其他技术手段,共同保障系统的稳定和高效运行。同时,要不断关注 Redis 缓存特性的发展和变化,及时调整策略,以应对不断出现的新挑战。
62 10
|
存储 缓存 NoSQL
Spring Boot2.5 实战 MongoDB 与高并发 Redis 缓存|学习笔记
快速学习 Spring Boot2.5 实战 MongoDB 与高并发 Redis 缓存
Spring Boot2.5 实战 MongoDB 与高并发 Redis 缓存|学习笔记
|
缓存 NoSQL 安全
6.0Spring Boot 2.0实战 Redis 分布式缓存6.0|学习笔记
快速学习6.0Spring Boot 2.0实战 Redis 分布式缓存6.0。
332 0
6.0Spring Boot 2.0实战 Redis 分布式缓存6.0|学习笔记
|
缓存 NoSQL Redis
首页数据显示-添加 redis 缓存(3)| 学习笔记
快速学习 首页数据显示-添加 redis 缓存(3)
151 0
首页数据显示-添加 redis 缓存(3)| 学习笔记
|
缓存 NoSQL Java
首页数据显示-添加 redis 缓存(1) | 学习笔记
快速学习 首页数据显示-添加 redis 缓存(1)
238 0
首页数据显示-添加 redis 缓存(1) | 学习笔记
|
存储 缓存 NoSQL
Redis 缓存|学习笔记
快速学习Redis 缓存
107 0
下一篇
无影云桌面