Python教程第10章 | 通俗易懂学装饰器

简介: 本章通过案例讲述了Python装饰器的基本概念与实战用法

什么是装饰器

python装饰器就是用于拓展原来函数功能的一种函数,这个函数的特殊之处在于它的返回值也是一个函数。可以理解为装饰器就是一个闭包,装饰器是闭包的一种应用。

首先有这么一个输出员工打卡信息的函数:

def punch():
    print('昵称:Johnny  部门:开发部 上班打卡成功')
punch()

image.gif

输出的结果如下:

昵称:Johnny  部门:开发部 上班打卡成功

image.gif

然后,产品反馈,不行啊,怎么上班打卡没有具体的日期,加上打卡的具体日期吧,这应该很简单,分分钟解决啦。好吧,那就直接添加打印日期的代码吧,如下:

import time
def punch():
    print(time.strftime('%Y-%m-%d', time.localtime(time.time())))
    print('昵称:Johnny  部门:开发部 上班打卡成功')
punch()

image.gif

输出结果如下:

2018-01-09
昵称:Johnny  部门:开发部 上班打卡成功

image.gif

这样改是可以,可是这样改是改变了函数的功能结构的,本身这个函数定义的时候就是打印某个员工的信息和提示打卡成功,现在增加打印日期的代码,可能会造成很多代码重复的问题。比如,还有一个地方只需要打印员工信息和打卡成功就行了,不需要日期,那么你又要重写一个函数吗?而且打印当前日期的这个功能方法是经常使用的,是可以作为公共函数给各个模块方法调用的。当然,这都是作为一个整体项目来考虑的。

既然是这样,我们可以使用函数式编程来修改这部分的代码。因为通过之前的学习,我们知道 Python 函数有两个特点,函数也是一个对象,而且函数里可以嵌套函数,那么修改一下代码变成下面这个样子:

import time
def punch():
    print('昵称:Johnny  部门:开发部 上班打卡成功')
def add_time(func):
    print(time.strftime('%Y-%m-%d', time.localtime(time.time())))
    func()
add_time(punch)

image.gif

输出结果:

2018-01-09
昵称:Johnny  部门:开发部 上班打卡成功

image.gif

这样是不是发现,这样子就没有改动 punch 方法,而且任何需要用到打印当前日期的函数都可以把函数传进 add_time 就可以了,就比如这样:

import time
def punch():
    print('昵称:Johnny  部门:开发部 上班打卡成功')
def add_time(func):
    print(time.strftime('%Y-%m-%d', time.localtime(time.time())))
    func()
def holiday():
    print('天气太冷,今天放假')
add_time(punch)
add_time(holiday)

image.gif

打印结果:

2018-01-09
昵称:Johnny  部门:开发部 上班打卡成功
2018-01-09
天气太冷,今天放假

image.gif

使用函数编程是不是很方便,但是,我们每次调用的时候,我们都不得不把原来的函数作为参数传递进去,还能不能有更好的实现方式呢?有的,就是本文要介绍的装饰器,因为装饰器的写法其实跟闭包是差不多的,不过没有了自由变量,那么这里直接给出上面那段代码的装饰器写法,来对比一下,装饰器的写法和函数式编程有啥不同。

import time
def decorator(func):
    def punch():
        print(time.strftime('%Y-%m-%d', time.localtime(time.time())))
        func()
    return punch
def punch():
    print('昵称:Johnny  部门:开发部 上班打卡成功')
f = decorator(punch)
f()

image.gif

输出的结果:

2018-01-09
昵称:Johnny  部门:开发部 上班打卡成功

image.gif

通过代码,能知道装饰器函数一般做这三件事:

  1. 接收一个函数作为参数
  2. 嵌套一个包装函数, 包装函数会接收原函数的相同参数,并执行原函数,且还会执行附加功能
  3. 返回嵌套函数

可是,认真一看这代码,这装饰器的写法怎么比函数式编程还麻烦啊。而且看起来比较复杂,甚至有点多此一举的感觉。

那是因为我们还没有用到装饰器的 “语法糖” ,我们看上面的代码可以知道, Python 在引入装饰器 (Decorator) 的时候,没有引入任何新的语法特性,都是基于函数的语法特性。这也就说明了装饰器不是 Python 特有的,而是每个语言通用的一种编程思想。只不过 Python 设计出了 @ 语法糖,让 定义装饰器,把装饰器调用原函数再把结果赋值为原函数的对象名的过程变得更加简单,方便,易操作,所以 Python 装饰器的核心可以说就是它的语法糖。

那么怎么使用它的语法糖呢?很简单,根据上面的写法写完装饰器函数后,直接在原来的函数上加 @ 和装饰器的函数名。如下:

import time
def decorator(func):
    def punch():
        print(time.strftime('%Y-%m-%d', time.localtime(time.time())))
        func()
    return punch
@decorator
def punch():
    print('昵称:Johnny  部门:开发部 上班打卡成功')
punch()

image.gif

输出结果:

2018-01-09
昵称:Johnny  部门:开发部 上班打卡成功

image.gif

那么这就很方便了,方便在我们的调用上,比如例子中的,使用了装饰器后,直接在原本的函数上加上装饰器的语法糖就可以了,本函数也无虚任何改变,调用的地方也不需修改。

不过这里一直有个问题,就是输出打卡信息的是固定的,那么我们需要通过参数来传递,装饰器该怎么写呢?装饰器中的函数可以使用 *args 可变参数,可是仅仅使用 *args 是不能完全包括所有参数的情况,比如关键字参数就不能了,为了能兼容关键字参数,我们还需要加上 **kwargs

因此,装饰器的最终形式可以写成这样:

import time
def decorator(func):
    def punch(*args, **kwargs):
        print(time.strftime('%Y-%m-%d', time.localtime(time.time())))
        func(*args, **kwargs)
    return punch
@decorator
def punch(name, department):
    print('昵称:{0}  部门:{1} 上班打卡成功'.format(name, department))
@decorator
def print_args(reason, **kwargs):
    print(reason)
    print(kwargs)
punch('Johnny', '开发部')
print_args('Johnny', sex='男', age=99)

image.gif

输出结果如下:

2018-01-09
昵称:Johnny  部门:开发部 上班打卡成功
2018-01-09
Johnny
{'sex': '男', 'age': 99}

image.gif


目录
打赏
0
0
0
0
38
分享
相关文章
|
22天前
|
掌握Python装饰器:轻松统计函数执行时间
掌握Python装饰器:轻松统计函数执行时间
155 76
用 Python 制作简单小游戏教程:手把手教你开发猜数字游戏
本教程详细讲解了用Python实现经典猜数字游戏的完整流程,涵盖从基础规则到高级功能的全方位开发。内容包括游戏逻辑设计、输入验证与错误处理、猜测次数统计、难度选择、彩色输出等核心功能,并提供完整代码示例。同时,介绍了开发环境搭建及调试方法,帮助初学者快速上手。最后还提出了图形界面、网络对战、成就系统等扩展方向,鼓励读者自主创新,打造个性化游戏版本。适合Python入门者实践与进阶学习。
109 1
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
199 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
掌握 Python 文件处理、并行处理和装饰器
本文介绍了 Python 在文件处理、并行处理以及高级功能(如装饰器、Lambda 函数和推导式)的应用。第一部分讲解了文件的基本操作、读写方法及处理大型文件的技巧,并演示了使用 Pandas 处理结构化数据的方式。第二部分探讨了多线程与多进程的并行处理,以及 `concurrent.futures` 模块的简化用法,适合不同类型的任务需求。第三部分则深入装饰器的实现与应用,包括简单装饰器、带参数的装饰器及 `functools.wraps` 的使用,同时简要介绍了 Lambda 函数和推导式的语法与场景。内容实用且全面,帮助读者掌握 Python 高效编程的核心技能。
|
3月前
|
Python教程:os 与 sys 模块详细用法
os 模块用于与操作系统交互,主要涉及夹操作、路径操作和其他操作。例如,`os.rename()` 重命名文件,`os.mkdir()` 创建文件夹,`os.path.abspath()` 获取文件绝对路径等。sys 模块则用于与 Python 解释器交互,常用功能如 `sys.path` 查看模块搜索路径,`sys.platform` 检测操作系统等。这些模块提供了丰富的工具,便于开发中处理系统和文件相关任务。
122 14
Python 原生爬虫教程:京东商品详情页面数据API
本文介绍京东商品详情API在电商领域的应用价值及功能。该API通过商品ID获取详细信息,如基本信息、价格、库存、描述和用户评价等,支持HTTP请求(GET/POST),返回JSON或XML格式数据。对于商家优化策略、开发者构建应用(如比价网站)以及消费者快速了解商品均有重要意义。研究此API有助于推动电商业务创新与发展。
|
8月前
|
深入理解Python装饰器:从入门到实践####
本文旨在通过简明扼要的方式,为读者揭开Python装饰器的神秘面纱,从基本概念、工作原理到实际应用场景进行全面解析。不同于常规的摘要仅概述内容概要,本文将直接以一段精炼代码示例开篇,展示装饰器如何优雅地增强函数功能,激发读者探索兴趣,随后深入探讨其背后的机制与高级用法。 ####
95 11
Python中的装饰器:从入门到精通
【10月更文挑战第7天】本文旨在通过浅显易懂的方式,向读者介绍Python中装饰器的概念、用法和高级应用。我们将从装饰器的定义开始,逐步深入到如何创建和使用装饰器,最后探讨装饰器在实战中的应用。文章将结合代码示例,帮助读者更好地理解和掌握这一强大的工具。

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问