谷歌发布MediaPipe LLM Inference API,28亿参数模型本地跑

简介: 【2月更文挑战第24天】谷歌发布MediaPipe LLM Inference API,28亿参数模型本地跑

e6246b5df078536acaf715a8a1710da3.jpeg
在人工智能领域,模型的规模和性能一直是推动技术进步的关键因素。随着计算能力的提升和算法的优化,AI模型变得越来越庞大,它们能够处理更复杂的任务,提供更精准的服务。然而,这些大模型往往需要强大的硬件支持,限制了它们在移动设备和个人电脑上的应用。谷歌最新发布的MediaPipe LLM Inference API,正是为了打破这一限制,让28亿参数的大模型也能在本地设备上流畅运行。

这一API的推出,是谷歌在跨设备AI技术领域的又一重要里程碑。它不仅简化了开发者在不同设备上部署AI模型的过程,还通过一系列技术创新,实现了模型在不同平台上的高效运行。这些技术包括新的操作、量化、缓存和权重共享等,它们共同作用,使得AI大模型能够在网页、安卓、iOS等设备上无缝运行。谷歌的这一举措,无疑为AI技术的普及和应用开辟了新的道路。

MediaPipe LLM Inference API目前支持的模型包括Gemma、Phi 2、Falcon和Stable LM,这些模型的参数规模从1B到3B不等。这些模型不仅能够在网页上运行,还能在安卓和iOS设备上提供服务。开发者可以根据需要选择使用基本模型权重,或者利用社区微调版,甚至使用自己的数据进行微调,以适应特定的应用场景。这种灵活性,使得AI模型能够更好地服务于用户,满足多样化的需求。

在iOS设备上,尽管目前只有Gemma 2B(int4)模型能够运行,但谷歌正在积极努力,以期让更多模型能够在iOS平台上启用。这一努力,体现了谷歌对于跨平台兼容性的重视,也预示着未来AI技术将更加普及和便捷。

为了确保模型能够在设备上高效运行,谷歌对MediaPipe LLM Inference API进行了细致的优化。这些优化措施包括权重共享、优化的全连接操作、平衡计算和内存使用、自定义操作符、伪动态性和优化的KV缓存布局等。这些技术的应用,不仅提高了模型的运行效率,还保证了在不同设备上的兼容性和稳定性。

谷歌的这一创新,不仅仅是技术上的突破,更是对AI大模型跨设备运行的一次大胆尝试。它将推动AI技术在更多领域的应用,为用户带来更加智能化的体验。随着谷歌计划将MediaPipe LLM Inference API扩展到更多平台和模型,未来的AI技术将更加强大,更加贴近人们的生活。

目录
相关文章
|
2月前
|
机器学习/深度学习 自然语言处理 PyTorch
LLM-Mixer: 融合多尺度时间序列分解与预训练模型,可以精准捕捉短期波动与长期趋势
近年来,大型语言模型(LLMs)在自然语言处理领域取得显著进展,研究人员开始探索将其应用于时间序列预测。Jin等人提出了LLM-Mixer框架,通过多尺度时间序列分解和预训练的LLMs,有效捕捉时间序列数据中的短期波动和长期趋势,提高了预测精度。实验结果显示,LLM-Mixer在多个基准数据集上优于现有方法,展示了其在时间序列预测任务中的巨大潜力。
80 3
LLM-Mixer: 融合多尺度时间序列分解与预训练模型,可以精准捕捉短期波动与长期趋势
|
5天前
|
人工智能 自然语言处理 API
Multimodal Live API:谷歌推出新的 AI 接口,支持多模态交互和低延迟实时互动
谷歌推出的Multimodal Live API是一个支持多模态交互、低延迟实时互动的AI接口,能够处理文本、音频和视频输入,提供自然流畅的对话体验,适用于多种应用场景。
41 3
Multimodal Live API:谷歌推出新的 AI 接口,支持多模态交互和低延迟实时互动
|
2月前
|
存储 人工智能 自然语言处理
Elasticsearch Inference API增加对阿里云AI的支持
本文将介绍如何在 Elasticsearch 中设置和使用阿里云的文本生成、重排序、稀疏向量和稠密向量服务,提升搜索相关性。
88 14
Elasticsearch Inference API增加对阿里云AI的支持
|
27天前
|
人工智能 Java API
ChatClient:探索与AI模型通信的Fluent API
【11月更文挑战第22天】随着人工智能(AI)技术的飞速发展,越来越多的应用场景开始融入AI技术以提升用户体验和系统效率。在Java开发中,与AI模型通信成为了一个重要而常见的需求。为了满足这一需求,Spring AI引入了ChatClient,一个提供流畅API(Fluent API)的客户端,用于与各种AI模型进行通信。本文将深入探讨ChatClient的底层原理、业务场景、概念、功能点,并通过Java代码示例展示如何使用Fluent API与AI模型进行通信。
46 8
|
2月前
|
人工智能 机器人 API
【通义】AI视界|谷歌Q3财报:Gemini API六个月增长14倍,公司超25%的新代码由AI生成
本文内容由通义自动生成,涵盖谷歌Q3财报、马斯克xAI融资、九巨头联盟挑战英伟达、Meta加大AI投入及麻省理工研究LLM与人脑相似性等热点资讯。更多精彩内容,请访问通通知道。
|
2月前
|
人工智能 搜索推荐 API
用于企业AI搜索的Bocha Web Search API,给LLM提供联网搜索能力和长文本上下文
博查Web Search API是由博查提供的企业级互联网网页搜索API接口,允许开发者通过编程访问博查搜索引擎的搜索结果和相关信息,实现在应用程序或网站中集成搜索功能。该API支持近亿级网页内容搜索,适用于各类AI应用、RAG应用和AI Agent智能体的开发,解决数据安全、价格高昂和内容合规等问题。通过注册博查开发者账户、获取API KEY并调用API,开发者可以轻松集成搜索功能。
|
3月前
|
人工智能 Serverless API
一键服务化:从魔搭开源模型到OpenAI API服务
在多样化大模型的背后,OpenAI得益于在领域的先发优势,其API接口今天也成为了业界的一个事实标准。
一键服务化:从魔搭开源模型到OpenAI API服务
|
2月前
|
计算机视觉
Deepseek开源多模态LLM模型框架Janus,魔搭社区最佳实践
deepseek近期推出了简单、统一且灵活的多模态框架Janus,它能够统一处理多模态理解和生成任务。让我们一起来了解一下吧。
|
3月前
|
存储 机器学习/深度学习 物联网
CGE:基于Causal LLM的Code Embedding模型
CodeFuse-CGE 项目在外滩大会展出,吸引众多技术与产品从业者的关注。“文搜代码”功能备受好评,模型表现令人期待。CodeFuse-CGE 采用大语言模型,通过 LoRA 微调提取文本与代码嵌入,实现在多个 NL2Code 基准测试中超越现有 SOTA 模型。现已开源 CGE-Large 与 CGE-Small 两种模型,欢迎访问 GitHub 页并支持本项目。[项目地址](https://github.com/codefuse-ai/CodeFuse-CGE)
92 2
|
2月前
|
开发工具 git
LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
71 0