Flink CDC产品常见问题之使用cdc-Oracle连接器报错如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。

问题一:Flink CDC里oracle-cdc 使用 xstream 方式采集成功的案例有吗?

Flink CDC里oracle-cdc 使用 xstream 方式采集成功的案例有吗?



参考答案:

有成功的案例,Flink CDC的oracle-cdc使用xstream方式采集是可行的。

Flink CDC(Change Data Capture)是一个用于捕获数据库变更事件的框架,它支持Oracle等多种数据库的实时数据同步。在使用Flink CDC进行Oracle数据库同步时,通常需要确保Oracle中相关表已开启归档日志和补充日志,因为这是Debezium LogMiner获取变更数据的必要条件。以下是一些关于Flink CDC同步Oracle数据库的关键细节:

  1. 版本要求:Flink CDC 2.1版本开始通过集成Debezium组件,实现了对Oracle数据库的支持。
  2. 配置要求:在Oracle数据库端,需要确保已经开启了归档日志和补充日志,以便Flink CDC能够捕获到数据的变更事件。
  3. 调试过程:在实施前,可以先在本地环境对Oracle CDC进行调试,确保配置正确无误后再进行生产环境的部署。
  4. 性能调优:在实际使用中,可能还需要对Flink作业进行性能调优,以确保同步的效率和稳定性。

综上所述,Flink CDC的oracle-cdc使用xstream方式采集是有成功案例的,但具体的配置和使用细节需要根据实际情况进行调整。在实施过程中,建议参考官方文档和社区的最佳实践,以及考虑使用云服务提供商的相关服务来简化部署和运维工作。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599282?spm=a2c6h.12873639.article-detail.27.50e24378TRW91E



问题二:Flink CDC里使用cdc-Oracle连接器的时候,报这个是怎么回事?

Flink CDC里使用cdc-Oracle连接器的时候,报java.io.IOException: No route to host, socket connect lapse 1 ms. /10.0.100.58 1521 0 1 true,是为啥?Oracle版本是11g。 cdc版本2.3



参考答案:

连接器的配置、连接参数都对不对 看看 报的错是找不到 数据库服务器.网络通不通?



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599281?spm=a2c6h.12873639.article-detail.28.50e24378TRW91E



问题三:为什么flink cdc采集mysql全量阶段数据的时候 要加一个 AND NOT的条件?

为什么flink cdc采集mysql全量阶段数据的时候 要加一个 AND NOT的条件?为什么不直接用大于等于 and 小于呢?



参考答案:

在Flink CDC采集MySQL全量阶段数据时,使用"AND NOT"条件的原因可能与确保数据同步的准确性和完整性有关。具体分析如下:

  1. 避免重复处理:在全量同步阶段,"AND NOT"条件可能用于排除那些已经被捕获并处理过的数据记录。这样做是为了避免重复处理相同的数据,确保只有新的或未被同步的数据被采集。
  2. 精确控制同步范围:使用"AND NOT"条件可以更精确地控制数据同步的范围。相比于仅使用大于等于和小于的条件,它提供了额外的逻辑判断,有助于筛选出确切需要同步的数据。
  3. 处理边界情况:在数据同步的过程中,可能会遇到一些边界情况,如数据的更新或删除。"AND NOT"条件可以帮助处理这些边界情况,确保数据的一致性。
  4. 优化性能:通过"AND NOT"条件减少不必要的数据处理,可以提高全量同步阶段的效率,减少对系统资源的压力。
  5. 容错机制:如果Flink CDC作业失败后重启,"AND NOT"条件可以帮助从上一次同步的位置继续,而不是从头开始,这样可以节省时间和资源。
  6. 兼容性考虑:Flink CDC在设计时可能考虑到了与MySQL的兼容性,以及如何在不同版本的MySQL之间保持一致的行为。
  7. 安全性:使用"AND NOT"条件也可能是出于安全性的考虑,确保不会错误地同步或覆盖重要数据。

综上所述,"AND NOT"条件的使用是为了确保数据同步的准确性、完整性和效率,同时处理各种边界情况,并提供一定的容错能力。在实际操作中,具体的实现细节可能会根据Flink CDC的版本和配置有所不同。如果需要深入了解Flink CDC的工作原理和最佳实践,建议查阅官方文档或相关技术专家的分享。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599279?spm=a2c6h.12873639.article-detail.29.50e24378TRW91E



问题四:Flink CDC里假设我想实现的场景未来可以实现吗?

Flink CDC里假设我想实现的场景是:将MySQL的商品信息以及统计商品的销量、热度等,同步到es,适合使用fink cdc吗?是同时监听商品表、订单表等相关表来实现实时同步吗?



参考答案:

参考这个case

https://ververica.github.io/flink-cdc-connectors/master/content/%E5%BF%AB%E9%80%9F%E4%B8%8A%E6%89%8B/mysql-starrocks-pipeline-tutorial-zh.html



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599278?spm=a2c6h.12873639.article-detail.30.50e24378TRW91E



问题五:Flink cdc3.0从mysql-starrocks,是不是实现了starrocks中自动建表?

Flink cdc3.0,从mysql-starrocks,是不是也实现了starrocks中自动建表功能呢?



参考答案:

是的,还可以自动创建starrocks数据库。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599276?spm=a2c6h.12873639.article-detail.31.50e24378TRW91E

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
174 56
|
2月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
3月前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
53 2
|
3月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
3月前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
152 0
|
3月前
|
SQL 运维 数据管理
在对比其他Flink实时计算产品
在对比其他Flink实时计算产品
|
5月前
|
存储 SQL 关系型数据库
实时计算 Flink版产品使用问题之如何高效地将各分片存储并跟踪每个分片的消费位置
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
消息中间件 Kafka 数据处理
实时计算 Flink版产品使用问题之如何处理数据并记录每条数据的变更
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
资源调度 Java Scala
实时计算 Flink版产品使用问题之如何实现ZooKeeper抖动导致任务失败时,能从最近的检查点重新启动任务
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
消息中间件 存储 关系型数据库
实时计算 Flink版产品使用问题之同步时,上游批量删除大量数据(如20万条),如何提高删除效率
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多