AI开发辅助,开启研发新时代

简介: AI开发辅助,开启研发新时代

一、前言


人工智能(AI)技术的快速发展正在彻底改变着软件研发的模式。传统的编码方式已经无法满足日益增长的需求,AI辅助开发将成为未来的发展趋势。本文将从AI辅助研发的六大趋势出发,为您揭示AI如何助力开发工作,提高效率,优化流程。



二、六大AI辅助开发趋势


1、从单角色辅助到端到端辅助

AI技术已经不再局限于单一角色的辅助,而是逐步扩展到整个软件开发生命周期的各个环节。通过AI工具可以简化需求分析、架构设计、代码编写、测试、部署等诸多流程,真正实现端到端的辅助。



2、辅助决策的知识管理

有效的知识管理是AI辅助的关键前提。传统的知识管理方式已经无法满足AI的需求,AI需要结构化、标准化的知识输入才能高效运转。未来公司需要建立AI友好的知识库,并通过AI辅助进行持续维护和优化。



3、AI应用的DevOps设施

PSDevOps是一组过程、方法与系统的统称,用于促进开发、技术运营和质量保障(QA)部门之间的沟通、协作与整合。

随着AI应用的不断增多,构建AI DevOps基础设施以支撑AI应用的运维也成为了当务之急。除了大模型本身的监控外,还需要对模型运营成本、缓存机制、Prompt优化等方面进行全方位考虑。



4、线上故障定位和问题解决

AI不仅能够从报错信息中快速定位故障代码,更能给出修复建议,极大提高了线上问题的处理效率。在复杂的微服务架构中,AI也可以辅助网络故障的排查,指导开发人员高效解决问题。



5、AI辅助UI设计

对于UI设计这一traditionally人工密集型工作,AI也可以发挥重要作用。AI可以辅助原型生成、低代码平台UI设计生成,以及IDE插件的UI代码生成,提高UI设计的效率和质量。



6、代码翻译与系统间迁移

生成式AI在自然语言和编程语言的双向翻译方面表现优异,可以辅助遗留系统的重构和不同系统间的功能迁移,如将应用从安卓迁移到鸿蒙系统。这将极大降低遗留系统的维护成本。




三、案例:某电商公司AI辅助开发实践


某知名电商公司最近在研发流程中引入了AI辅助,初见成效。

1、他们首先建立了包含需求文档、架构设计、代码规范等的知识库,并针对知识库的内容训练了语义模型。

2、在需求分析阶段,AI可以结合历史需求和领域知识,智能生成需求文档初稿,极大提高了效率。

3、在架构设计时,AI能给出多种可选方案并分析利弊,辅助架构师作出决策。

4、代码编写阶段,AI不仅能给出代码推荐,更能根据上下文智能解释和修复代码,为开发者提供实时辅助。

5、测试用例的自动生成、Bug的快速定位与修复等,也因AI的加入而变得更加高效。

该公司的研发经理表示,AI辅助使他们的工作效率提高了30%以上,并且代码质量和一致性也有了明显改善。


四、未来展望

AI辅助研发正在从单一场景向更广阔的领域延伸,未来可期。但与此同时,标准化规范的建立、知识库的构建等工作仍然任重道远,需要持续的投入。我们有理由相信,在不远的将来,AI将与开发人员完美结合,全方位辅助研发工作,共同开启软件开发的新时代。

相关文章
|
3月前
|
机器学习/深度学习 人工智能 安全
AI加速疫苗研发:从十年磨一剑到一年出成果
AI加速疫苗研发:从十年磨一剑到一年出成果
234 27
|
4月前
|
人工智能 监控 前端开发
支付宝 AI 出行助手高效研发指南:4 人团队的架构迁移与提效实战
支付宝「AI 出行助手」是一款集成公交、地铁、火车票、机票、打车等多项功能的智能出行产品。
634 21
支付宝 AI 出行助手高效研发指南:4 人团队的架构迁移与提效实战
|
7月前
|
人工智能 JavaScript Devops
云效 MCP Server:AI 驱动的研发协作新范式
云效MCP Server是阿里云云效平台推出的模型上下文协议(Model Context Protocol)标准化接口系统,作为AI助手与DevOps平台的核心桥梁。通过该协议,AI大模型可无缝集成云效DevOps平台,直接访问和操作包括项目管理、代码仓库、工作项等关键研发资产,实现智能化全生命周期管理。其功能涵盖代码仓库管理、代码评审、项目管理和组织管理等多个方面,支持如创建分支、合并请求、查询工作项等具体操作。用户可通过通义灵码内置的MCP市场安装云效MCP服务,并配置个人访问令牌完成集成。实际场景中,AI助手可自动分析需求、生成代码、创建功能分支并提交合并请求,极大提升研发效率。
|
5月前
|
人工智能 文字识别 供应链
高校实验实训课程开发:基于现有的硬件基础和开源能力研发最前沿的AI实验课程
更多基于学校现有硬件基础:企业需求场景的开发和发展,更加注重上层数据和应用,各类工具软件的出现,极大提升了各类硬件的应用价值。我们看到各类硬件厂商,想方设法把硬件卖给学校,但是很多硬件不是在那里尘封,就是寥寥无几的使用场景,我们希望基于学校现有的硬件基础去开发更多面向不同行业或专业的实验实训课程,物尽其用。基于学校现有的硬件,集约开发,极大降低硬件投入成本。
206 7
|
5月前
|
人工智能 自然语言处理 测试技术
AI时代,Apipost和Apifox如何利用AI技术赋能API研发测试管理所需?
在数字化转型加速背景下,API成为企业互联互通的关键。Apipost与Apifox作为主流工具,在AI赋能方面差异显著。Apipost通过智能参数命名、接口设计自动化、测试用例生成、断言自动化等功能大幅提升研发效率和质量,尤其适合中大型企业及复杂业务场景。相比之下,Apifox功能依赖手动操作较多,适用性更偏向初创或小型项目。随着AI技术发展,Apipost展现出更强的智能化与前瞻性优势,为企业提供高效、稳定的API管理解决方案,助力其在竞争激烈的市场中实现创新突破。
148 0
|
8月前
|
人工智能 编解码 异构计算
Neo-1:全球首个原子级生成式AI模型!这个AI模型把10年药物研发周期压缩到1个月
VantAI推出的Neo-1是全球首个统一分子生成与原子级结构预测的AI模型,采用潜在空间扩散技术,结合大规模训练和定制数据集,显著提升药物研发效率。
411 15
Neo-1:全球首个原子级生成式AI模型!这个AI模型把10年药物研发周期压缩到1个月
|
6月前
|
人工智能 JSON 测试技术
AI 驱动 API 研发提效:解析 Apipost 在 API 文档生成场景的全流程能力
随着AI和大模型技术发展,软件开发步入智能化时代。API研发作为核心环节,高效调试与文档编写至关重要。Apipost是国内领先的API协同工具,提供从API设计到性能测试的完整闭环,支持AI驱动的文档生成、Markdown润色及OpenAPI生成等功能,显著提升团队效率。其AI功能可一键补全参数描述、生成示例代码与响应样例,减少重复劳动,助力开发者专注于业务逻辑优化。无论是快速迭代还是大规模接口设计,Apipost都为高效协作提供了强大支持。
289 0
|
9月前
|
消息中间件 人工智能 Java
通义灵码2.0深度评测:AI原生研发时代的开发者革命
作为一名五年开发经验的程序员,我深刻感受到从手动编码到AI辅助编程的变革。通义灵码2.0基于Qwen2.5-Coder大模型,通过代码生成、多文件协同、单元测试和跨语言支持等功能,显著提升开发效率。它能生成完整工程代码,自动处理复杂业务逻辑与依赖关系;在系统升级和微服务改造中表现出色;自动生成高质量单元测试用例;还具备跨语言转换能力。尽管存在一些改进空间,但其高频迭代和功能优化展现了巨大潜力。通义灵码2.0正推动软件开发从“体力活”向“架构创造力”转型,是开发者不可错过的生产力工具。
通义灵码2.0深度评测:AI原生研发时代的开发者革命
|
9月前
|
人工智能 自然语言处理
TxGemma:谷歌DeepMind革命药物研发!270亿参数AI药理学家24小时在线
谷歌推出专为药物研发设计的TxGemma大模型,具备药物特性预测、生物文献筛选、多步推理等核心能力,提供20亿至270亿参数版本,显著提升治疗开发效率。
298 7
TxGemma:谷歌DeepMind革命药物研发!270亿参数AI药理学家24小时在线
|
9月前
|
存储 人工智能 缓存
AI变革药物研发:深势科技的云原生实践之路
阿里云助力深势科技推出创新的玻尔Bohrium®科研云平台和Hermite®药物计算设计平台,并持续完善。这两项先进的工业设计与仿真基础设施成果通过AI技术赋能科学研究和工业研发,不仅大幅缩短了药物研发周期,降低了成本,还显著提高了研发成功率,为生物医药行业带来了前所未有的变革,这是AI for Science领域的重大突破。
565 38

热门文章

最新文章