Flink Connector JDBC已经被移到了一个独立的仓库

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 【2月更文挑战第23天】Flink Connector JDBC已经被移到了一个独立的仓库

是的,从Flink 1.13版本开始,Flink Connector JDBC已经被移到了一个独立的仓库,不再包含在Flink主仓库中。这个变化是为了更好地管理和维护连接器,并提供更灵活的版本发布。

将Flink Connector JDBC单独拆分为一个独立的项目有以下几个优点:

  1. 独立的版本控制:连接器的开发和版本控制可以与Flink相互独立进行。这使得连接器的迭代和发布可以更加灵活,无需等待整个Flink发布周期。
  2. 更容易参与贡献:将连接器作为一个独立项目,使得开发者更容易参与其中,并对连接器进行改进、修复和添加新功能。
  3. 更好的模块化和可升级性:独立的连接器项目能够更好地实现模块化设计,使得可以更方便地添加其他数据库驱动程序支持或增强现有功能,同时也降低了对Flink主仓库的影响。

尽管Flink Connector JDBC被移动到了独立的项目仓库,但它仍然是Flink的官方连接器之一,并且与Flink主仓库保持紧密的合作。您可以通过访问Flink Connector JDBC项目的仓库,获取最新的版本、贡献代码或提出问题。

在Flink的open()方法中,你可以通过调用ExecutionEnvironment的getMasterUrl()方法来获取JobManager的IP地址。这个方法返回的是JobManager的RPC地址,也就是JobManager的IP地址和端口。

以下是一个示例:

public void open(Configuration parameters) throws Exception {
   
 String jobManagerAddress = getExecutionEnvironment().getMasterUrl();
 System.out.println("JobManager address: " + jobManagerAddress);
}

在这个示例中,我们首先调用getExecutionEnvironment()方法获取ExecutionEnvironment对象,然后调用其getMasterUrl()方法获取JobManager的RPC地址。最后,我们将这个地址打印出来。

请注意,这个方法只有在Flink集群模式下才有效,因为只有在集群模式下,ExecutionEnvironment才会有JobManager的RPC地址。如果是在本地模式下运行Flink,这个方法将返回null。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
3月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。
|
4月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之如何配置Connector来保持与MySOL一致
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
消息中间件 存储 关系型数据库
实时计算 Flink版产品使用问题之如何使用Kafka Connector将数据写入到Kafka
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
消息中间件 Kafka 数据处理
实时计算 Flink版操作报错合集之使用kafka connector时,报错:java.lang.ClassNotFoundException,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
6月前
|
NoSQL 关系型数据库 Java
实时计算 Flink版产品使用问题之如何使用Flink MongoDB Connector连接MongoDB
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
关系型数据库 数据库 流计算
实时计算 Flink版操作报错合集之在使用Flink CDC TiDB Connector时,无法获取到事件,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
413 0
|
6月前
|
Java 数据库连接 数据处理
实时计算 Flink版产品使用问题之JDBC连接器实时同步的时候如何删除数据吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
3月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
1月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1158 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
1月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
148 56