使用PolarDB-X与Flink搭建实时数据大屏

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 使用PolarDB-X与Flink搭建实时数据大屏

背景知识
本场景主要涉及以下云产品和服务:

云服务器ECS
云服务器(Elastic Compute Service,简称ECS)是阿里云提供的性能卓越、稳定可靠、弹性扩展的IaaS(Infrastructure as a Service)级别云计算服务。一台云服务器ECS实例等同于一台虚拟服务器,内含CPU、内存、操作系统、网络配置、磁盘等基础的组件。云服务器ECS免去了您采购IT硬件的前期准备,让您像使用水、电、天然气等公共资源一样便捷、高效地使用服务器,实现计算资源的即开即用和弹性伸缩。阿里云ECS持续提供创新型服务器,解决多种业务需求,助力您的业务发展。

PolarDB-X
PolarDB-X是一款面向超高并发、海量存储、复杂查询场景设计的云原生分布式数据库系统。其采用Shared-nothing与存储计算分离架构,支持水平扩展、分布式事务、混合负载等能力,具备企业级、云原生、高可用、高度兼容MySQL系统及生态等特点。

PolarDB-X最初为解决阿里巴巴天猫“双十一”核心交易系统数据库扩展性瓶颈而生,之后伴随阿里云一路成长,是一款经过多种核心业务场景验证的、成熟稳定的数据库系统。PolarDB-X的核心特性如下:

水平扩展
PolarDB-X采用Shared-nothing架构进行设计,支持多种Hash和Range数据拆分算法,通过隐式主键拆分和数据分片动态调度,实现系统的透明水平扩展。

分布式事务
PolarDB-X采用MVCC+TSO方案及2PC协议实现分布式事务。事务满足ACID特性,支持RC/RR隔离级别,并通过一阶段提交、只读事务、异步提交等优化实现事务的高性能。

混合负载
PolarDB-X通过原生MPP能力实现对分析型查询的支持,通过CPU quota约束、内存池化、存储资源分离等实现了OLTP与OLAP流量的强隔离。

企业级
PolarDB-X为企业场景设计了诸多内核能力,例如SQL限流、SQL Advisor、TDE、三权分立、Flashback Query等

云原生
PolarDB-X在阿里云上有多年的云原生实践,支持通过K8s Operator管理集群资源,支持公有云、混合云、专有云等多种形态进行部署,并支持国产化操作系统和芯片。

高可用
通过多数派Paxos协议实现数据强一致,支持两地三中心、三地五副本等多种容灾方式,同时通过Table Group、Geo-locality等提高系统可用性。

兼容MySQL系统及生态
PolarDB-X的目标是完全兼容 MySQL,目前兼容的内容包括MySQL协议、MySQL大部分语法、Collation、事务隔离级别、Binlog等。

PolarDB-X架构:

如上图所示,PolarDB-X采用Shared-nothing与存储计算分离架构进行设计,系统由计算节点、存储节点、元数据服务和日志节点四个核心组件组成。在本次实验部署中,您可以把四个核心组件想象成四个docker容器或者是四个进程,相互之间协作,组合构建完整的PolarDB-X。

计算节点(CN, Compute Node)
计算节点是系统的入口,采用无状态设计,包括 SQL 解析器、优化器、执行器等模块。负责数据分布式路由、计算及动态调度,负责分布式事务 2PC 协调、全局二级索引维护等,同时提供 SQL 限流、三权分立等企业级特性。

存储节点(DN, Data Node)
存储节点负责数据的持久化,基于多数派 Paxos 协议提供数据高可靠、强一致保障,同时通过 MVCC 维护分布式事务可见性。

元数据服务(GMS, Global Meta Service)
元数据服务负责维护全局强一致的 Table/Schema, Statistics 等系统 Meta 信息,维护账号、权限等安全信息,同时提供全局授时服务(即 TSO)。

日志节点(CDC, Change Data Capture)
日志节点提供完全兼容 MySQL Binlog 格式和协议的增量订阅能力,提供兼容 MySQL Replication 协议的主从复制能力。

相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
相关文章
|
SQL 数据可视化 关系型数据库
使用PolarDB-X与Flink搭建实时数据大屏
《PolarDB-X 动手实践》系列第七期,本场景带您体验如何使用PolarDB-X与Flink搭建一个实时数据大屏。
|
SQL 数据可视化 关系型数据库
实践教程之使用PolarDB-X与Flink搭建实时数据大屏
PolarDB-X 为了方便用户体验,提供了免费的实验环境,您可以在实验环境里体验 PolarDB-X 的安装部署和各种内核特性。除了免费的实验,PolarDB-X 也提供免费的视频课程,手把手教你玩转 PolarDB-X 分布式数据库。 本期实验将指导您使用 PolarDB-X 与Flink搭建实时数据大屏。
实践教程之使用PolarDB-X与Flink搭建实时数据大屏
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
4月前
|
存储 监控 大数据
阿里云实时计算Flink在多行业的应用和实践
本文整理自 Flink Forward Asia 2023 中闭门会的分享。主要分享实时计算在各行业的应用实践,对回归实时计算的重点场景进行介绍以及企业如何使用实时计算技术,并且提供一些在技术架构上的参考建议。
835 7
阿里云实时计算Flink在多行业的应用和实践
|
22天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
777 17
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
3月前
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
19天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
zdl
|
10天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
40 0
|
1月前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
70 1
|
1月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
下一篇
无影云桌面