阿里云百炼大模型服务--模型训练指南

简介: 模型训练是通过Fine-tuning训练模式提高模型效果的功能模块,作为重要的大模型效果优化方式,用户可以通过构建符合业务场景任务的训练集,调整参数训练模型,训练模型学习业务数据和业务逻辑,最终提高在业务场景中的模型效果。

一般来讲,模型训练有四个主要过程,包括:

  • 数据准备:构建适合训练的训练数据集,一般来是问答Pair的组合,基于不同任务有不同的呈现形态。
  • 模型训练:通过选择合适的数据集,调整参数,训练特定的模型以提高模型效果,可通过训练过程/结果指标初步判断训练效果。
  • 模型部署:训练好的模型需要部署后方可提供推理服务(评测、应用调用均需先部署模型)。
  • 模型评测:构建合适的数评测数据集,针对已经训练好的模型进行评测,通过评测系统进行打分或标注,验证模型训练的效果。


下方视频介绍了模型训练的功能及应用场景,我们通过观看视频后,一起探讨吧~

如果您在学习过程中有遇到什么问题需要我们解答,可以在评论区中留言探讨或是加入我们的官方支持群(群号:77600022533)进行交流反馈!


阿里云百炼官网网址

阿里云百炼控制台



相关文章
|
1月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】阿里云人工智能平台 PAI 多篇论文入选 EMNLP2024
阿里云人工智能平台 PAI 的多篇论文在 EMNLP2024 上入选。论文成果是阿里云与华南理工大学金连文教授团队、复旦大学王鹏教授团队共同研发。EMNLP 是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台 PAI 在自然语言处理和多模态算法能力方面研究获得了学术界认可。
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
【机器学习】大模型驱动下的医疗诊断应用
摘要: 随着科技的不断发展,机器学习在医疗领域的应用日益广泛。特别是在大模型的驱动下,机器学习为医疗诊断带来了革命性的变化。本文详细探讨了机器学习在医疗诊断中的应用,包括疾病预测、图像识别、基因分析等方面,并结合实际案例进行分析。同时,还展示了部分相关的代码示例,以更好地理解其工作原理。
50 3
【机器学习】大模型驱动下的医疗诊断应用
|
1月前
|
机器学习/深度学习 算法 PyTorch
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
56 1
|
1月前
|
机器学习/深度学习 自然语言处理 前端开发
前端大模型入门:Transformer.js 和 Xenova-引领浏览器端的机器学习变革
除了调用API接口使用Transformer技术,你是否想过在浏览器中运行大模型?Xenova团队推出的Transformer.js,基于JavaScript,让开发者能在浏览器中本地加载和执行预训练模型,无需依赖服务器。该库利用WebAssembly和WebGPU技术,大幅提升性能,尤其适合隐私保护、离线应用和低延迟交互场景。无论是NLP任务还是实时文本生成,Transformer.js都提供了强大支持,成为构建浏览器AI应用的核心工具。
443 1
|
2月前
|
存储 人工智能 并行计算
Pai-Megatron-Patch:围绕Megatron-Core打造大模型训练加速生态
Pai-Megatron-Patch(https://github.com/alibaba/Pai-Megatron-Patch)是阿里云人工智能平台PAI研发的围绕Nvidia MegatronLM的大模型开发配套工具,旨在帮助开发者快速上手大模型,完成大模型(LLM)相关的高效分布式训练,有监督指令微调,下游任务评估等大模型开发链路。最近一年来,我们持续打磨Pai-Megatron-Patch的性能和扩展功能,围绕Megatron-Core(以下简称MCore)进一步打造大模型训练加速技术生态,推出更多的的训练加速、显存优化特性。
|
1月前
|
JSON 测试技术 API
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
|
3月前
|
机器学习/深度学习 存储 缓存
Java本地高性能缓存实践问题之阿里云机器学习团队开源社区的问题如何解决
Java本地高性能缓存实践问题之阿里云机器学习团队开源社区的问题如何解决
|
3月前
|
机器学习/深度学习 存储 缓存
模型遇见知识图谱问题之参与阿里云机器学习团队的开源社区的问题如何解决
模型遇见知识图谱问题之参与阿里云机器学习团队的开源社区的问题如何解决

热门文章

最新文章

相关产品

  • 大模型服务平台百炼