Apache Hudi与机器学习特征存储

简介: Apache Hudi与机器学习特征存储

1. 在线和离线特征

如果在训练和推理系统中特征工程代码不相同,则存在代码不一致的风险,因此,预测可能不可靠,因为特征可能不相同。一种解决方案是让特征工程作业将特征据写入在线和离线数据库。训练和推理应用程序在做出预测时都需要读取特征-在线应用可能需要低延迟(实时)访问该特征数据,另一种解决方案是使用共享特征工程库(在线应用程序和训练应用程序使用相同的共享库)。

2. 时间旅行

“考虑到过去发生的事件,事件发生期间特征价值是什么?“

通常数据库不支持时间旅行,即通常无法在某个时间点查询某个列的值。当然可以通过确保定义特征数据的schema都包含datetime / event-time列来解决此问题,最近的数据湖通过存储所有更新以支持对旧特征值查询,从而增加了对时间旅行查询的支持。一些支持时间旅行功能的数据平台:

  • Apache Hudi
  • Databricks Delta
  • Data Version Control (更像Git而不是数据库)

3. 特征工程

Michelangelo添加了特定领域语言(DSL)以支持原始数据源(数据库,数据湖)的工程特征。使用通用框架(如Apache Spark / PySpark,Pandas,Apache Flink和Apache Beam)也是一个不错的选择。

4. 物化训练/测试数据

模型的训练数据既可以直接从特征存储传输到模型中,也可以物化到存储系统(例如S3,HDFS或本地文件系统)中。如果将多个框架用于ML – TensorFlow,PyTorch,Scikit-Learn,则建议将训练/测试数据物化为框架的本机文件格式(Tensorflow为.tfrecords,PyTorch为.npy)。

ML框架的常见文件格式:

  • .tfrecords(TensorFlow / Keras)
  • .npy(PyTorch,Scikit-Learn)
  • .csv(Scikit-Learn等)
  • .petastorm(TensorFlow / Keras,PyTorch)
  • .h5(Keras)

5. 在线特征存储

模型可能具有数百个特征,但是在线应用程序可能只是从用户交互(userId,sessionId,productId,datetime等)中接收了其中的一些特征。在线应用程序使用在线特征存储来查找缺失的特征并构建特征向量,该特征向量被发送到在线模型以进行预测。在线模型通常通过网络提供服务,因为它将模型的生命周期与应用程序的生命周期不相同。在线特征存储的延迟、吞吐量、安全性和高可用性对于其在企业中的成功至关重要。下面显示了现有特征存储中使用k-v数据库和内存数据库的吞吐量。

6. 特征存储对比

7. Hopworks特征存储架构

目录
打赏
0
0
0
0
40
分享
相关文章
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
119 7
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
199 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
特征平台PAI-FeatureStore的功能列表
本内容介绍了阿里云PAI FeatureStore的功能与使用方法,涵盖离线和在线特征管理、实时特征视图、行为序列特征视图、FeatureStore SDK的多语言支持(如Go、Java、Python)、特征生产简化方案、FeatureDB存储特性(高性能、低成本、及时性)、训练样本导出以及自动化特征工程(如AutoFE)。同时提供了相关文档链接和技术细节,帮助用户高效构建和管理特征工程。适用于推荐系统、模型训练等场景。
60 2
机器学习模型中特征贡献度分析:预测贡献与错误贡献
本文将探讨特征重要性与特征有效性之间的关系,并引入两个关键概念:预测贡献度和错误贡献度。
747 3
|
2月前
PAI-Rec推荐平台对于实时特征有三个层次
PAI-Rec推荐平台针对实时特征有三个处理层次:1) 离线模拟反推历史请求时刻的实时特征;2) FeatureStore记录增量更新的实时特征,模型特征导出样本准确性达99%;3) 通过callback回调接口记录请求时刻的特征。各层次确保了实时特征的准确性和时效性。
64 0
使用PAI-FeatureStore管理风控应用中的特征
PAI-FeatureStore 是阿里云提供的特征管理平台,适用于风控应用中的离线和实时特征管理。通过MaxCompute定义和设计特征表,利用PAI-FeatureStore SDK进行数据摄取与预处理,并通过定时任务批量计算离线特征,同步至在线存储系统如FeatureDB或Hologres。对于实时特征,借助Flink等流处理引擎即时分析并写入在线存储,确保特征时效性。模型推理方面,支持EasyRec Processor和PAI-EAS推理服务,实现高效且灵活的风险控制特征管理,促进系统迭代优化。
99 6
计算效率提升 10 倍,存储成本降低 60%,灵犀科技基于 Apache Doris 建设统一数据服务平台
灵犀科技早期基于 Hadoop 构建大数据平台,在战略调整和需求的持续扩增下,数据处理效率、查询性能、资源成本问题随之出现。为此,引入 [Apache Doris](https://doris.apache.org/) 替换了复杂技术栈,升级为集存储、加工、服务为一体的统一架构,实现存储成本下降 60%,计算效率提升超 10 倍的显著成效。
计算效率提升 10 倍,存储成本降低 60%,灵犀科技基于 Apache Doris 建设统一数据服务平台
招联金融基于 Apache Doris 数仓升级:单集群 QPS 超 10w,存储成本降低 70%
招联内部已有 40+ 个项目使用 Apache Doris ,拥有超百台集群节点,个别集群峰值 QPS 可达 10w+ 。通过应用 Doris ,招联金融在多场景中均有显著的收益,比如标签关联计算效率相较之前有 6 倍的提升,同等规模数据存储成本节省超 2/3,真正实现了降本提效。
招联金融基于 Apache Doris 数仓升级:单集群 QPS 超 10w,存储成本降低 70%
Apache Paimon:重塑阿里智能引擎数据处理新纪元,解锁高效存储与实时分析潜能!
【8月更文挑战第2天】探索 Apache Paimon 在阿里智能引擎的应用场景
326 2
Apache Doris + Apache Hudi 快速搭建指南|Lakehouse 使用手册(一)
本文将在 Docker 环境下,为读者介绍如何快速搭建 Apache Doris + Apache Hudi 的测试及演示环境,并对各功能操作进行演示,帮助读者快速入门。
Apache Doris + Apache Hudi 快速搭建指南|Lakehouse 使用手册(一)

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等