Flink CDC + Hudi + Hive + Presto构建实时数据湖最佳实践

本文涉及的产品
RDS AI 助手,专业版
RDS MySQL DuckDB 分析主实例,基础系列 4核8GB
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: Flink CDC + Hudi + Hive + Presto构建实时数据湖最佳实践

1. 测试过程环境版本说明

Flink1.13.1

Scala2.11

CDH6.2.0

Hadoop3.0.0

Hive2.1.1

Hudi0.10(master)

PrestoDB0.256

Mysql5.7

2. 集群服务器基础环境

2.1 Maven和JDK环境版本

2.2 Hadoop 集群环境版本

2.3 HADOOP环境变量配置

export HADOOP_HOME=/opt/cloudera/parcels/CDH/lib/hadoopexport HADOOP_CALSSPATH=`$HADOOP_HOME/bin/hadoop classpath`

3. Hudi编译环境配置

3.1 Maven Home settings.xml配置修改

说明:指定aliyun maven地址(支持CDH cloudera依赖) mirror库

<mirrors><mirror><id>alimaven</id><mirrorOf>central,!cloudera</mirrorOf><name>aliyun maven</name><url>http://maven.aliyun.com/nexus/content/groups/public/</url></mirror></mirrors>

3.2 下载Hudi源码包

git clone https://github.com/apache/hudi.git

Hudi社区建议版本适配

hudi0.9 适配 flink1.12.2

hudi0.10(master) 适配 flink1.13.X ( 说明master分支上版本还未release)

3.3 Hudi 客户端命令行

3.4 修改Hudi集成flink和Hive编译依赖版本配置

hudi-master/packaging/hudi-flink-bundle

pom.xml文件 ( 笔者环境CDH6.2.0 hive2.1.1)

<profile><id>flink-bundle-shade-hive2</id><properties><hive.version>2.1.1-cdh6.2.0</hive.version><flink.bundle.hive.scope>compile</flink.bundle.hive.scope></properties><dependencies><dependency><groupId>${hive.groupid}</groupId><artifactId>hive-service-rpc</artifactId><version>${hive.version}</version><scope>${flink.bundle.hive.scope}</scope></dependency></dependencies></profile>

3.5 编译Hudi 指定Hadoop和Hive版本信息

mvn clean install -DskipTests-Drat.skip=true-Dscala-2.11-Dhadoop.version=3.0.0-Pflink-bundle-shade-hive2

(可加 –e –X 参数查看编译ERROR异常和DEBUG信息)

说明:默认scala2.11、默认不包含hive依赖

首次编译耗时较长 笔者首次编译大概花费 50min+(也和服务器网络有关)

后续编译会快一些 大约15min左右

3.6 Hudi编译异常

修改Hudi master pom.xml 增加 CDH repository地址

3.7 Hudi重新编译

3.8 Hudi编译结果说明

hudi-master/packaging/hudi-flink-bundle/target

hudi-flink-bundle_2.11-0.10.0-SNAPSHOT.jar

说明:hudi-flink-bundle jar 是 flink 用来写入和读取数据

hudi-master/packaging/hudi-hadoop-mr-bundle/target

hudi-hadoop-mr-bundle-0.10.0-SNAPSHOT.jar

说明:hudi-mr-bundle jar 是 hive 需要用来读hudi数据

4. Flink环境配置

版本说明:Flink 1.13.1 scala2.11版本

4.1 FLINK_HOME 下 sql-client-defaults.yaml 配置

4.2 flink-conf.yaml配置修改

# state.backend: filesystemstate.backend: rocksdb# 开启增量checkpointstate.backend.incremental: true# state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpointsstate.checkpoints.dir: hdfs://nameservice/flink/flink-checkpointsclassloader.check-leaked-classloader: falseclassloader.resolve-order: parent-first

4.3 FLINK_HOME lib下添加依赖

flink-sql-connector-mysql-cdc-1.4.0.jarflink-sql-connector-oracle-cdc-2.1-SNAPSHOT.jar.BAK – oracle cdc 依赖 flink-format-changelog-json-1.4.0.jarflink-sql-connector-kafka_2.11-1.13.1.jar--- Hadoop home lib下copy过来hadoop-mapreduce-client-common-3.0.0-cdh6.2.0.jarhadoop-mapreduce-client-core-3.0.0-cdh6.2.0.jarhadoop-mapreduce-client-jobclient-3.0.0-cdh6.2.0.jar--- hudi编译jar copy过来hudi-flink-bundle_2.11-0.10.0-SNAPSHOT.jar

说明:目前oracle cdc jar和mysql cdc jar一起在lib下发现有冲突异常

5 启动flink yarn session服务

5.1 FLINK_HOME shell 命令

$FLINK_HOME/bin/yarn-session.sh -s 2-jm 2048-tm 2048-nm ys-hudi01 -d

5.2 Yarn Web UI

5.3 Flinksql Client 启动命令

$FLINK_HOME/bin/sql-client.sh embedded -j ./lib/hudi-flink-bundle_2.11-0.10.0-SNAPSHOT.jar shell

说明:-j指定hudi-flink 依赖jar

Show table /show catalogs

6. MySQL binlog 开启配置

6.1 创建binlog日志存储路径

mkdir logs

6.2 修改目录属主和group

chown -R mysql:mysql /mysqldata/logs

6.3 修改mysql配置信息

vim /etc/my.cnfserver-id=2log-bin= /mysqldata/logs/mysql-binbinlog_format=rowexpire_logs_days=15binlog_row_image=full

6.4 修改完,重启mysql server

service mysqld restart

6.5 客户端查看binlog日志情况

show master logs;

Mysql 版本:5.7.30

5.6 创建mysql sources 表 DDL

create table users_cdc(   id bigint auto_increment primary key,   name varchar(20) null,   birthday timestamp default CURRENT_TIMESTAMP notnull,   ts timestamp default CURRENT_TIMESTAMP notnull);

7. FlinkCDC sink Hudi测试代码过程

7.1 Flink sql cdc DDL 语句:(具体参数说明可参考flink官网)

CREATE TABLE mysql_users (    id BIGINT PRIMARY KEY NOT ENFORCED ,    name STRING,    birthday TIMESTAMP(3),    ts TIMESTAMP(3)) WITH ('connector'= 'mysql-cdc','hostname'= '127.0.0.1','port'= '3306','username'= '','password'=’’,'server-time-zone'= 'Asia/Shanghai','debezium.snapshot.mode'='initial','database-name'= 'luo','table-name'= 'users_cdc');

7.2 查询mysql cdc 表

Flink SQL> select * from mysql_users;

由于目前MySQL users_cdc表是空,所以flinksql 查询没有数据 只有表结构;

Flink web UI:

7.3 创建一个临时视图,增加分区列 方便后续同步hive分区表

Flink SQL> create view mycdc_v AS SELECT *, DATE_FORMAT(birthday, 'yyyyMMdd') as partition FROM mysql_users;

说明:partition 关键字需要 `` 引起来

查询视图数据也是空结构,但增加了分区字段:

Flink SQL> select * from mycdc_v;

Flink web UI:

7.4 设置checkpoint间隔时间,存储路径已在flink-conf配置设置全局路径

建议:测试环境 可设置秒级别(不能太小),生产环境可设置分钟级别。

Flink SQL> set execution.checkpointing.interval=30sec;

7.5 Flinksql 创建 cdc sink hudi文件,并自动同步hive分区表DDL 语句

CREATE TABLE mysqlcdc_sync_hive01(id bigint ,name string,birthday TIMESTAMP(3),ts TIMESTAMP(3),`partition` VARCHAR(20),primary key(id) not enforced --必须指定uuid 主键)PARTITIONED BY (`partition`)with('connector'='hudi','path'= 'hdfs://nameservice /luo/hudi/mysqlcdc_sync_hive01', 'hoodie.datasource.write.recordkey.field'= 'id'-- 主键, 'write.precombine.field'= 'ts'-- 自动precombine的字段, 'write.tasks'= '1', 'compaction.tasks'= '1', 'write.rate.limit'= '2000'-- 限速, 'table.type'= 'MERGE_ON_READ'-- 默认COPY_ON_WRITE,可选MERGE_ON_READ , 'compaction.async.enabled'= 'true'-- 是否开启异步压缩, 'compaction.trigger.strategy'= 'num_commits'-- 按次数压缩, 'compaction.delta_commits'= '1'-- 默认为5, 'changelog.enabled'= 'true'-- 开启changelog变更, 'read.streaming.enabled'= 'true'-- 开启流读, 'read.streaming.check-interval'= '3'-- 检查间隔,默认60s, 'hive_sync.enable'= 'true'-- 开启自动同步hive, 'hive_sync.mode'= 'hms'-- 自动同步hive模式,默认jdbc模式, 'hive_sync.metastore.uris'= 'thrift://hadoop:9083'-- hive metastore地址-- , 'hive_sync.jdbc_url'= 'jdbc:hive2://hadoop:10000'-- hiveServer地址, 'hive_sync.table'= 'mysqlcdc_sync_hive01'-- hive 新建表名, 'hive_sync.db'= 'luo'-- hive 新建数据库名, 'hive_sync.username'= ''-- HMS 用户名, 'hive_sync.password'= ''-- HMS 密码, 'hive_sync.support_timestamp'= 'true'-- 兼容hive timestamp类型);

说明:Hudi目前支持MOR和COW两种模式

(1) Copy on Write:使用列式存储来存储数据(例如:parquet),通过在写入期间执行同步合并来简单地更新和重现文件

(2) Merge on Read:使用列式存储(parquet)+行式文件(arvo)组合存储数据。更新记录到增量文件中,然后进行同步或异步压缩来生成新版本的列式文件。

COW:Copy on Write (写时复制),快照查询+增量查询

MOR:Merge on Read (读时合并),快照查询+增量查询+读取优化查询(近实时)

使用场景上:

(1)COW适用写少读多的场景 ,MOR 适用写多读少的场景;

(2)MOR适合CDC场景,更新延迟要求较低,COW目前不支持 changelog mode 不适合处理cdc场景;

Flink web UI

7.6 Flink sql mysql cdc数据写入hudi文件数据

Flink SQL> insert into mysqlcdc_sync_hive01 select id,name,birthday,ts,partition from mycdc_v;

Flink web UI DAG图:

7.7 HDFS上Hudi文件目录情况

说明:目前还没写入测试数据,hudi目录只生成一些状态标记文件,还未生成分区目录以及.log 和.parquet数据文件,具体含义可见hudi官方文档。

7.8 Mysql数据源写入测试数据

insert into users_cdc (name) values ('cdc01');

7.9 Flinksql 查询mysql cdc insert数据:

Flink SQL> set execution.result-mode=tableau;

[WARNING] The specified key 'execution.result-mode' is deprecated. Please use 'sql-client.execution.result-mode' instead.

[INFO] Session property has been set.

Flink SQL> select * from mysql_users; -- 查询到一条insert数据

7.10 Flink web UI页面可以看到DAG 各个环节产生一条测试数据

7.11 Flinksql 查询 sink的hudi表数据

Flink SQL> select * from mysqlcdc_sync_hive01; --已查询到一条insert数据

7.12 Hdfs上Hudi文件目录变化情况

7.13 Hive分区表和数据自动同步情况

7.14 查看自动创建hive表结构

hive> show create table mysqlcdc_sync_hive01_ro;

hive> show create table mysqlcdc_sync_hive01_rt;

7.15 查看自动生成的表分区信息

hive> show partitions mysqlcdc_sync_hive01_ro;

hive> show partitions mysqlcdc_sync_hive01_rt;

说明:已自动生产hudi MOR模式的

mysqlcdc_sync_hive01_ro

mysqlcdc_sync_hive01_rt

ro表和rt表区别:

ro 表全称 read oprimized table,对于 MOR 表同步的 xxx_ro 表,只暴露压缩后的 parquet。其查询方式和COW表类似。设置完 hiveInputFormat 之后 和普通的 Hive 表一样查询即可;

rt表示增量视图,主要针对增量查询的rt表;

ro表只能查parquet文件数据, rt表 parquet文件数据和log文件数据都可查;

7.16 Hive访问Hudi数据

说明:需要引入hudi-hadoop-mr-bundle-0.10.0-SNAPSHOT.jar

引入Hudi依赖jar方式:

(1) 引入到 $HIVE_HOME/lib下;

(2) 引入到$HIVE_HOME/auxlib 自定义第三方依赖 修改 hive-site.xml配置文件;

(3) Hive shell命令行引入 Session级别有效;

其中(1)和(3)配置完后需要重启 hive-server服务;

查询Hive 分区表数据:

hive> select * from mysqlcdc_sync_hive01_ro; --已查询到mysq insert的一条数据

hive> select * from mysqlcdc_sync_hive01_rt; --已查询到mysq insert的一条数据

Hive 条件查询:

hive> select name,ts from mysqlcdc_sync_hive01_ro where partition='20211109';

Hive ro表 count查询

hive> select count(1) from mysqlcdc_sync_hive01_ro;


Hive Count异常解决:

引入hudi-hadoop-mr-bundle-0.10.0-SNAPSHOT.jar依赖

hive> add jar hdfs://nameservice /luo/hudi-hadoop-mr-bundle-0.10.0-SNAPSHOT.jar;

hive> set hive.input.format = org.apache.hudi.hadoop.hive.HoodieCombineHiveInputFormat;


hive> select count(1) from mysqlcdc_sync_hive01_ro; --可正常count


Hive rt表 count查询

hive> select count(1) from mysqlcdc_sync_hive01_rt;

说明:rt 表count 还是异常,和Hudi社区人员沟通hudi master目前还没release这块存在bug正在修复中

具体见:https://issues.apache.org/jira/browse/HUDI-2649

7.17 Mysql 数据源写入多条测试数据

insert into users_cdc (name) values ('cdc02');insert into users_cdc (name) values ('cdc03');insert into users_cdc (name) values ('cdc04');insert into users_cdc (name) values ('cdc05');insert into users_cdc (name) values ('cdc06');


Flink web UI DAG中数据链路情况:

7.18 Flinksql中新写入数据查询情况

Yarn web UI application_1626256835287_40351[1]资源使用情况


Hdfs上Hudi文件目录变化情况


Hudi状态文件说明:

(1)requested:表示一个动作已被安排,但尚未启动

(2)inflight:表示当前正在执行操作

(3)completed:表示在时间线上完成了操作

Flink jobmanager log sync hive过程详细日志




7.19 Mysql 数据源更新数据

update users_cdc set name = 'cdc05-bj'where id = 5;


7.20 Flinksql 查询cdc update数据 产生两条binlog数据


说明:flinksql 查询最终只有一条+I有效数据,且数据已更新

Flink web UI DAG接受到两条binlog数据,但最终compact和sink只有一条有效数据


7.21 MySQL 数据源 delete 一条数据:

deletefrom users_cdc where id = 3;


Flink Web UI job DAG中捕获一条新数据:


Flinksql changlog delete数据变化查询

HDFS上Hudi数据文件生成情况



Hudi文件类型说明:

(1)commits: 表示将一批数据原子性写入表中

(2)cleans: 清除表中不在需要的旧版本文件的后台活动

(3)delta_commit:增量提交是指将一批数据原子性写入MergeOnRead类型的表中,其中部分或者所有数据可以写入增量日志中

(4)compaction: 协调hudi中差异数据结构的后台活动,例如:将更新从基于行的日志文件变成列格式。在内部,压缩的表现为时间轴上的特殊提交

(5)rollback:表示提交操作不成功且已经回滚,会删除在写入过程中产生的数据


说明:hudi分区文件以及.log和.parquet文件都已生成

两种文件区别:Hudi会在DFS分布式文件系统上的basepath基本路径下组织成目录结构。每张对应的表都会成多个分区,这些分区是包含该分区的数据文件的文件夹,与hive的目录结构非常相似。在每个分区内,文件被组织成文件组,文件id为唯一标识。每个文件组包含多个切片,其中每个切片包含在某个提交/压缩即时时间生成的基本列文件(parquet文件),以及自生成基本文件以来对基本文件的插入/更新的一组日志文件(*.log)。Hudi采用MVCC设计,其中压缩操作会将日志和基本文件合并成新的文件片,清理操作会将未使用/较旧的文件片删除来回收DFS上的空间。

Flink 任务checkpoint 情况:

设置30s 一次



7.22 Hive shell查询数据update和delete变化情况:

hive> select * from mysqlcdc_sync_hive01_ro;


hive> select * from mysqlcdc_sync_hive01_rt;


7.23 Hudi Client端操作Hudi表

进入Hudi客户端命令行:

hudi-master/hudi-cli/hudi-cli.sh

连接Hudi表,查看表信息

hudi->connect --path hdfs://nameservice1/tmp/luo/hudi/mysqlcdc_sync_hive01


查看Hudi commit信息

hudi:mysqlcdc_sync_hive01->commits show --sortBy "CommitTime"

查看Hudi compactions 计划

hudi:mysqlcdc_sync_hive01->compactions show all

7.24 PrestoDB 查询Hive表Hudi数据

版本说明:PrestoDB 0.256 DBeaver7.0.4

PrestoDB 集群配置和hive集成参考PrestoDB官网

presto-server-***/etc/catalog/hive.properties 配置hive catalog

可通过 presto-cli 连接 hive metastore 开启查询,presto-cli 的设置参考 presto官方配置;

DBeaver客户端查询Hive ro表数据:


Hive ro表count 正常:


查询Hive rt表数据查询异常:


Hive rt表count异常:


Presto Web ui:



相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
6月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
2662 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
9月前
|
数据采集 SQL canal
Amoro + Flink CDC 数据融合入湖新体验
本文总结了货拉拉高级大数据开发工程师陈政羽在Flink Forward Asia 2024上的分享,聚焦Flink CDC在货拉拉的应用与优化。内容涵盖CDC应用现状、数据入湖新体验、入湖优化及未来规划。文中详细分析了CDC在多业务场景中的实践,包括数据采集平台化、稳定性建设,以及面临的文件碎片化、Schema演进等挑战。同时介绍了基于Apache Amoro的湖仓融合架构,通过自优化服务解决小文件问题,提升数据新鲜度与读写平衡。未来将深化Paimon与Amoro的结合,打造更高效的入湖生态与自动化优化方案。
530 1
Amoro + Flink CDC 数据融合入湖新体验
|
8月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
SQL 存储 Java
Hudi on Flink 快速上手指南
本文由阿里巴巴的陈玉兆分享,主要介绍 Flink 集成 Hudi 的最新版本功能以及快速上手实践指南。
Hudi on Flink 快速上手指南
|
6月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
649 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
4105 74
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
650 56
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
830 0
Flink CDC 在阿里云实时计算Flink版的云上实践

热门文章

最新文章