数据结构——lesson5栈和队列详解

简介: 数据结构——lesson5栈和队列详解

前言:

之前的博客我们学习了数据结构中的顺序表和链表,现在我们一起回顾一下它们各自的优缺点。

首先是顺序表

✨优点:

1.支持下标的随机访问(因为是数组的形式);

2.尾插尾删比较方便,效率不错;

3.CPU高速缓存命中率较高;

✨ 缺点:

1.前面部分插入删除数据需要挪动数据,时间复杂度为O(n);

2.空间不够需要扩容——一方面扩容需要付出代价例如异地扩容, 另一方面扩容一般还伴随着空间的浪费;

其次是链表

✨优点:

1.任意位置插入删除数据都比较方便高效,时间复杂度为O(1);

2.按需申请释放空间

✨缺点:

1.不支持下标的随机访问;

2.CPU高速缓存命中率较低;

我们发现顺序表的优点和缺点恰好对应着链表的缺点和优点,顺序表和链表各自都有它们独特的作用与优势,不存在优劣之分。大家在使用的时候要根据自己的需求去选择哦~


一、栈


1.1栈的概念及结构

栈: 一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为***栈顶***,另一端称为栈底。栈中的数据元素遵守***后进先出***LIFO(Last In First Out)的原则。

压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。

出栈:栈的删除操作叫做出栈。出数据也在栈顶。

1.2栈的实现

栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的代价比较小。

如图所示,左边是栈尾,右边是栈顶(进行出栈也就是删除操作);

以下是栈的实现:

#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>
typedef int STDataType;
// 支持动态增长的栈
typedef int STDataType;
typedef struct Stack//定义一个结构体表现栈
{
    STDataType* a;
    int top;       // 栈顶
    int capacity;  // 容量 
}Stack;
// 初始化栈 
void StackInit(Stack* ps);
// 入栈 
void StackPush(Stack* ps, STDataType data);
// 出栈 
void StackPop(Stack* ps);
// 获取栈顶元素 
STDataType StackTop(Stack* ps);
// 获取栈中有效元素个数 
int StackSize(Stack* ps);
// 检测栈是否为空,如果为空返回true,如果不为空返回false
bool StackEmpty(Stack* ps);
// 销毁栈 
void StackDestroy(Stack* ps);

栈实现包括初始化,入栈,出栈,获取栈顶元素,获取栈中有效元素个数,判断栈是否为空以及销毁栈这7个函数。

下面我们来具体实现栈:

(1)初始化栈

void StackInit(Stack* ps);

// 初始化栈 
void StackInit(Stack* ps)
{
  assert(ps);
  ps->a = NULL;
  ps->capacity = 0;
  ps->top = 0;//指向栈顶的下一个数据
  //ps->top = -1; //则指向栈顶数据
}

这里要注意*ps->top = 0*** 代表的是栈顶元素的下一个;ps->top = -1才指向栈顶元素,因为后面的函数每增加一个元素,ps->top++,如果初始化top = 0,加一个元素后,top=1;表示的位置是下标为1(其本质是数组,下标为1的位置表示第二个元素),但确间接表明了栈中元素的个数刚好为1,所以为了后续方便,我们选择初始化top=0;当然你也可以自由选择。

(2)入栈

void StackPush(Stack* ps, STDataType data);

void StackPush(Stack* ps, STDataType data)
{
  assert(ps);
  if (ps->top == ps->capacity)//判断空间是否满了
  {
  //空间capacity满了就需要扩容
    STDataType newcapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;//判断是否扩容过,如果capacity为0就增加4
    //个单位空间,否则开辟capacity的2倍空间
    ps->capacity = newcapacity;//扩容后capacity要等于newcapacity
    ps->a = (STDataType*)realloc(ps->a, newcapacity * sizeof(STDataType));
    if (ps->a == NULL)
    {
      perror("realloc fail");
      return;
    }
  }
  ps->a[ps->top] = data;//入栈
  ps->top++;//栈顶+1
}

这里入栈要注意判断栈的容量是否满了,满了需要使用realloc函数扩容,对于realloc函数有疑问的小伙伴可以查看土土的博客——C语言动态内存函数介绍

(3)出栈

void StackPop(Stack* ps)

// 出栈 
void StackPop(Stack* ps)
{
  assert(ps);
  assert(!StackEmpty(ps));//判断非空
  ps->top--;
}

出栈就比较简单,只需将top–即可,但是同时也要注意判断栈不为空哦~判空函数StackEmpty(ps)将在后面实现

(4)获取栈顶元素

STDataType StackTop(Stack* ps)

// 获取栈顶元素 
STDataType StackTop(Stack* ps)
{
  assert(ps);
  assert(!StackEmpty(ps));//判断非空
  return ps->a[ps->top-1];
}

是时候考验你们的专注力了,这里返回栈顶元素用的是top-1;有小伙伴知道为什么不直接用top吗?答案我们放在下一个获取栈中有效元素个数函数中揭晓。

(5)获取栈中有效元素个数

int StackSize(Stack* ps)

// 获取栈中有效元素个数 
int StackSize(Stack* ps)
{
  assert(ps);
  return ps->top;
}

上一个函数获取栈顶元素我们使用的是top-1,是因为在初始化函数时我们就介绍过将top初始化为0,指向栈顶元素的下一个,所以要获取栈顶元素我们要将top-1;依此类推栈中有效元素个数就恰好是top了。

(6)检测栈是否为空

bool StackEmpty(Stack* ps)

// 检测栈是否为空,如果为空返回true,如果不为空返回false
bool StackEmpty(Stack* ps)
{
  assert(ps);
  /*if (ps->top == 0)
    return true;
  else
    return false;*/
  return ps->top == 0;
}

这里可以使用if语句来判断,也可以如上面代码所示直接使用return返回。

(7)销毁栈

void StackDestroy(Stack* ps)

// 销毁栈 
void StackDestroy(Stack* ps)
{
  assert(ps);
  free(ps->a);
  ps->capacity = 0;
  ps->a = NULL;
  ps->top = 0;
}

这里就不过多赘述,使用free销毁即可;因为数组时地址连续的一段物理空间,所以只要数组首元素地址即可free整个数组与链表需要遍历不同。

栈实现可视化如下图所示:

代码如下:

#define _CRT_SECURE_NO_WARNINGS 1
#include"stack.h"
void Sttest()
{
  Stack ST;
  StackInit(&ST);
  StackPush(&ST, 1);
  StackPush(&ST, 2);
  StackPush(&ST, 3);
  StackPush(&ST, 4);
  while (ST.top)//打印栈
  {
    printf("%d", StackTop(&ST));
    StackPop(&ST);//打印一个出一个
  }
  StackDestroy(&ST);
}
int main()
{
  Sttest();
  return 0;
}

二、队列

2.1队列的概念及结构

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出FIFO(First In First Out)
入队列:进行
插入操作
的一端称为队尾
出队列:进行
删除操作**的一端称为队头

发现进行删除操作的都是队头,无论栈还是队列;

队列根据其名字,我们不难发现类似于我们生活中的排队,先排队的肯定会先出去;

2.2队列的实现

队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数组头上出数据,效率会比较低。

// 链式结构:表示队列 
typedef int QDataType;
typedef struct QListNode 
{ 
    struct QListNode* pNext; 
    QDataType data; 
}QNode; 
 
// 队列的结构 
typedef struct Queue 
{ 
QNode* front; 
QNode* rear; 
}Queue; 
// 初始化队列 
void QueueInit(Queue* q); 
// 队尾入队列 
void QueuePush(Queue* q, QDataType data); 
// 队头出队列 
void QueuePop(Queue* q); 
// 获取队列头部元素 
QDataType QueueFront(Queue* q); 
// 获取队列队尾元素 
QDataType QueueBack(Queue* q); 
// 获取队列中有效元素个数 
int QueueSize(Queue* q); 
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
int QueueEmpty(Queue* q); 
// 销毁队列 
void QueueDestroy(Queue* q);

队列相较于栈定义了两个结构体来表示,一个结构体QNode表示节点,另一个结构体Queue则用来表示队列的头尾指针,展示队列的结构。

队列也包含了初始化,队尾入队列,队头出队列,获取队列头部元素,获取队列尾部元素,以及有效元素个数,判空,销毁这八个函数。

(1)初始化队列

void QueueInit(Queue* q);

// 初始化队列 
void QueueInit(Queue* q)
{
  assert(q);
  q->front = NULL;
  q->rear = NULL;
}

将Queue结构体初始化即可

(2)队尾入队列

void QueuePush(Queue* q, QDataType data);

// 队尾入队列 
void QueuePush(Queue* q, QDataType data)
{
  assert(q);
  QNode* newnode = (QNode*)malloc(sizeof(QNode));//创建新节点
  if (newnode == NULL)
  {
    perror("malloc fail");
    return;
  }
  newnode->data = data;
  newnode->pNext = NULL;
  //队列为空的情况入队列
  if (QueueEmpty(q))
  {
    q->front = newnode;
    q->rear = newnode;
    return;
  }
  //队列不为空的情况入队列
  else
  {
    q->rear->pNext = newnode;
    q->rear = newnode;
    return;
  }
}

队尾入队列首先要记得malloc一个新节点,然后要记得判断队列是否为空,分为两种情况。判空函数将在后面实现。

(3)队头出队列

void QueuePop(Queue* q);

// 队头出队列 
void QueuePop(Queue* q)
{
  assert(q);
  assert(!QueueEmpty(q));//判断队列非空
  QNode* tmp = q->front;//先保存队头指针
  q->front = tmp->pNext;
  free(tmp);
}

队头出队列要记得free释放出去节点的空间。

(4)获取队列头部元素

QDataType QueueFront(Queue* q);

// 获取队列头部元素 
QDataType QueueFront(Queue* q)
{
  assert(q);
  assert(!QueueEmpty(q));//判断队列非空
  return q->front->data;
}

通过结构体Queue的front指针可以直接找到头返回即可。

(5)获取队列队尾元素

QDataType QueueBack(Queue* q);

// 获取队列队尾元素 
QDataType QueueBack(Queue* q)
{
  assert(q);
  assert(!QueueEmpty(q));//判断队列非空
  return q->rear->data;
}

同样通过结构体Queue的rear指针可以直接找到尾返回即可。

(6) 获取队列中有效元素个数

int QueueSize(Queue* q)

// 获取队列中有效元素个数 
int QueueSize(Queue* q)
{
  assert(q);
  assert(!QueueEmpty(q));//判断队列非空
  int count = 0;//记录元素个数
  QNode* cur = q->front;
  while (cur)
  {
    cur = cur->pNext;
    count++;
  }
  return count;
}

这里队列用的是链表的结构,所以需要使用循环遍历来获取有效元素的个数。

(7)检测队列是否为空

bool QueueEmpty(Queue* q);

// 检测队列是否为空,如果为空返回true,非空返回false
bool QueueEmpty(Queue* q)
{
  assert(q);
  return q->front == NULL;
}

队列头指针为空即没有元素进入队列。

(8)销毁队列

void QueueDestroy(Queue* q);

// 销毁队列 
void QueueDestroy(Queue* q)
{
  assert(q);
  while (q->front)
  {
    QueuePop(q);
  }
}

QueuePop()函数将元素从队头删除的同时也使用了free释放空间,所以这里直接使用该函数即可。

队列实现可视化如下图所示:

实现代码如下:

#include"queue.h"
void Qtest()
{
  Queue QT;
  QueueInit(&QT);
  QueuePush(&QT, 1);
  QueuePush(&QT, 2);
  QueuePush(&QT, 3);
  QueuePush(&QT, 4);
  while (QT.front)
  {
    printf("%d", QueueFront(&QT));
    QueuePop(&QT);
  }
  QueueDestroy(&QT);
}
int main()
{
  Qtest();
  return 0;
}

三、练习题

1.一个栈的初始状态为空。现将元素1、2、3、4、5、A、B、C、D、E依次入栈,然后再依次出栈,则元素出
栈的顺序是(  )。
A 12345ABCDE
 B EDCBA54321
 C ABCDE12345
 D 54321EDCBA
 
2.若进栈序列为 1,2,3,4 ,进栈过程中可以出栈,则下列不可能的一个出栈序列是()
A 1,4,3,2
 B 2,3,4,1
 C 3,1,4,2
 D 3,4,2,1
 
3.以下(  )不是队列的基本运算?
A 从队尾插入一个新元素
B 从队列中删除第i个元素
C 判断一个队列是否为空
D 读取队头元素的值

答案:BCB

四、结语

栈和队列有很多的相似之处,尽管栈是队头进入删除数据(后进先出),队列是队尾入数据,队头删数据(先进先出),但其本质是一样的。熟悉了栈和队列后,相信大家对于顺序表和链表的理解也会更上一层楼。以上就是栈和队列的学习啦~ 完结撒花~🥳🥳🎉

相关文章
|
19天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
98 9
|
10天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
19 1
|
13天前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
16天前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。
|
18天前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
46 4
|
22天前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
数据结构(栈与列队)
数据结构(栈与列队)
20 1
|
1月前
|
存储 JavaScript 前端开发
为什么基础数据类型存放在栈中,而引用数据类型存放在堆中?
为什么基础数据类型存放在栈中,而引用数据类型存放在堆中?
71 1
|
1月前
【数据结构】-- 栈和队列
【数据结构】-- 栈和队列
17 0
|
1月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
31 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器

热门文章

最新文章

下一篇
无影云桌面