程序环境和预处理(含C语言程序的编译+链接)--1

简介: 程序环境和预处理(含C语言程序的编译+链接)--1

1. 程序的翻译环境和执行环境

在ANSI C(标准C)的任何一种实现中,存在两个不同的环境;

第1种是翻译环境,在这个环境中源代码被转换为可执行的机器指令;

第2种是执行环境,它用于实际执行代码;

换种说法就是:

计算机时能够执行二进制指令的;

但是我们写出的代码是文本信息,计算机不能够直接理解;

翻译环境-->代码转换为--->二进制指令

执行环境-->执行二进制代码

2. 详解编译+链接

2.1 翻译环境

每个源文件都会单独经过编译器的处理,生成一个对应的目标文件;

例如:test.c源文件    经过编译器处理生成    test.obj文件;

然后多个目标文件+链接库经过连接器的处理生成可执行程序,最终生成  test.exe  的文件;

其中:链接器同时也会引入标准C函数库中任何被该程序所用到的函数,而且它可以搜索程

序员个人 的程序库,将其需要的函数也链接到程序中;

这个连接器的处理过程就叫链接;

实例:

当我们写好这两个文件进行编译链接后:

如图:

生成了两个obj的目标文件

一个exe的可执行程序

 

2.3 运行环境(简单介绍)

程序执行的过程:

1. 程序必须载入内存中。在有操作系统的环境中:一般这个由操作系统完成。在独立的环境中,程序 的载入必须由手工安排,也可能是通过可执行代码置入只读内存来完成;

2. 程序的执行便开始。接着便调用 main 函数;

3. 开始执行程序代码。这个时候程序将使用一个运行时堆栈(stack),存储函数的局部变量和返回地址,程序同时也可以使用静态(static )内存,存储于静态内存中的变量在程序的整个执行过程一直保留他们的值;

4. 终止程序,正常终止 main 函数;也有可能是意外终止;

3. 预处理详解

3.1 预定义符号

__FILE__       // 进行编译的源文件

__LINE__     // 文件当前的行号

__DATE__     // 文件被编译的日期

__TIME__     // 文件被编译的时间

__STDC__     // 如果编译器遵循 ANSI C ,其值为 1 ,否则未定义

这些预定义符号都是语言内置的

举个栗子:

 

运行结果:

 

3.2 #define

3.2.1 #define 定义标识符

语法:

       #define    name    stuff

举个栗子:

提问:

在define定义标识符的时候,要不要在最后加上 ; ?

比如:

建议不要加上 ; ,这样容易导致问题

比如下面的场景:

这里会出现语法错误

 

3.2.2 #define 定义宏

#define 机制包括了一个规定,允许把参数替换到文本中,这种实现通常称为宏(macro)或定义 宏(define macro)

下面是宏的申明方式:

#define name( parament - list ) stuff

其中的 parament - list 是一个由逗号隔开的符号表,它们可能出现在 stuff

注意:

参数列表的左括号必须与 name 紧邻;

如果两者之间有任何空白存在,参数列表就会被解释为 stuff 的一部分

如例子一:

这个宏接收一个参数 x

如果在上述声明之后,你把

置于程序中,预处理器就会用下面这个表达式替换上面的表达式:

警告:

这个宏存在一个问题:

观察下面的代码段:

 

乍一看,你可能觉得这段代码将打印36这个值

事实上,它将打印11.

为什么?

替换文本时,参数  x  被替换成  a + 1  ,所以这条语句实际上变成了:

printf  (" %d \ n", a + 1 * a + 1 );

这样就比较清晰了,由替换产生的表达式并没有按照预想的次序进行求值。

在宏定义上加上两个括号,这个问题便轻松的解决了:

这样预处理之后就产生了预期的效果:

例子二:

这里还有一个宏定义:

 

定义中我们使用了括号,想避免之前的问题,但是这个宏可能会出现新的错误

 

这将打印什么值呢?

warning

看上去,好像打印 100 ,但事实上打印的是 55.

我们发现替换之后:

 

乘法运算先于宏定义的加法,所以出现了 55

这个问题,的解决办法是在宏定义表达式两边加上一对括号就可以了

 

提示:

所以用于对数值表达式进行求值的宏定义都应该用这种方式加上括号,避免在使用宏时由于

参数中 的操作符或邻近操作符之间不可预料的相互作用;

 

2.2.3 #define 替换规则

在程序中扩展 #define 定义符号和宏时,需要涉及几个步骤

1. 在调用宏时,首先对参数进行检查,看看是否包含任何由 #define 定义的符号。如果是,它们首先被替换;

2. 替换文本随后被插入到程序中原来文本的位置。对于宏,参数名被他们的值所替换;

3. 最后,再次对结果文件进行扫描,看看它是否包含任何由 #define 定义的符号。如果是,就重复上述处理过程;

注意:

1. 宏参数和 #define 定义中可以出现其他 #define 定义的符号。但是对于宏,不能出现递归;

2. 当预处理器搜索 #define 定义的符号的时候,字符串常量的内容并不被搜索;

3.2.4 ###

知识铺垫:

C语言支持这样的写法:

两个字符串和在一起,相当于一个字符串;

我们发现字符串是有自动连接的特点的

如:

当我们写一个这样的代码:

我们发现几个printf函数打印的内容都相似,那我们能不能定义一个宏来实现打印呢?

答案是:可以的。

这里就要用到#的作用了,将参数插入到字符串中

 

 

#的作用:

使用 # 把一个宏参数变成对应的字符串,就是把一个宏的参数,以字符串的形式,插入到

一个字符串中去;

下面讲解  ##  的作用及用法:

##的作用:()只能在宏定义里使用

##可以把位于它两边的符号合成一个符号;

它允许宏定义从分离的文本片段创建标识符;

例如:

分析:

注:

这样的连接必须产生一个合法的标识符。否则其结果就是未定义的

3.2.5 带副作用的宏参数

当宏参数在宏的定义中出现超过一次的时候,如果参数带有副作用,那么你在使用这个宏的时候就可能 出现危险,导致不可预测的后果。副作用就是表达式求值的时候出现的永久性效果。

例如:

 

MAX宏可 以证明具有副作用的参数所引起的问题

例如:

运行结果是什么呢?

 

这里我们得知道预处理器处理之后的结果是什么:

输出的结果是:

 

输出结果分析:

 

3.2.6 宏和函数对比

宏通常被应用于执行简单的运算;

比如在两个数中找出较大的一个;

 

这里不用函数的原因有二:

1. 用于调用函数和从函数返回的代码可能比实际执行这个小型计算工作所需要的时间更多;

所以宏比函数在程序的规模和速度方面更胜一筹;

2. 更为重要的是函数的参数必须声明为特定的类型;

所以函数只能在类型合适的表达式上使用,反之这个宏怎可以适用于整形、长整型、浮点型等可以 用于>来比较的类型;

宏是类型无关的

宏的缺点:当然和函数相比宏也有劣势的地方:

1. 每次使用宏的时候,一份宏定义的代码将插入到程序中,除非宏比较短,否则可能大幅度增加程序 的长度;

2. 宏是没法调试的;

3. 宏由于类型无关,也就不够严谨;

4. 宏可能会带来运算符优先级的问题,导致程容易出现错;

 

宏有时候可以做函数做不到的事情

比如:宏的参数可以出现 类型 ,但是函数做不到

宏和函数的一个对比:

宏和函数的对比

 

#define 定义宏

函数

代码

长度

每次使用时,宏代码都会被插入到程序中。除了非常

小的宏之外,程序的长度会大幅度增长

函数代码只出现于一个地方;每

次使用这个函数时,都调用那个

地方的同一份代码

执行

速度

更快

存在函数的调用和返回的额外开

销,所以相对慢一些

操作符

优先级

宏参数的求值是在所有周围表达式的上下文环境里,

除非加上括号,否则邻近操作符的优先级可能会产生

不可预料的后果,所以建议宏在书写的时候多些括

号。

函数参数只在函数调用的时候求

值一次,它的结果值传递给函

数。表达式的求值结果更容易预

带有副

作用的

参数

参数可能被替换到宏体中的多个位置,所以带有副作

用的参数求值可能会产生不可预料的结果

函数参数只在传参的时候求值一

次,结果更容易控制。

参数

类型

宏的参数与类型无关,只要对参数的操作是合法的,

它就可以使用于任何参数类型

函数的参数是与类型有关的,如

果参数的类型不同,就需要不同

的函数,即使他们执行的任务是

相同的

调试

宏是不方便调试的

函数是可以逐语句调试的

递归

宏是不能递归的

函数是可以递归的                                                                                                                         

3.2.7 命名约定

一般来讲函数的宏的使用语法很相似。所以语言本身没法帮我们区分二

那我们平时的一个习惯是:

把宏名全部大写

函数名不要全部大写

本章完~

剩余未讲解完的知识在下章


 

目录
相关文章
|
2月前
|
存储 算法 C语言
"揭秘C语言中的王者之树——红黑树:一场数据结构与算法的华丽舞蹈,让你的程序效率飙升,直击性能巅峰!"
【8月更文挑战第20天】红黑树是自平衡二叉查找树,通过旋转和重着色保持平衡,确保高效执行插入、删除和查找操作,时间复杂度为O(log n)。本文介绍红黑树的基本属性、存储结构及其C语言实现。红黑树遵循五项基本规则以保持平衡状态。在C语言中,节点包含数据、颜色、父节点和子节点指针。文章提供了一个示例代码框架,用于创建节点、插入节点并执行必要的修复操作以维护红黑树的特性。
66 1
|
2月前
|
NoSQL 编译器 程序员
【C语言】揭秘GCC:从平凡到卓越的编译艺术,一场代码与效率的激情碰撞,探索那些不为人知的秘密武器,让你的程序瞬间提速百倍!
【8月更文挑战第20天】GCC,GNU Compiler Collection,是GNU项目中的开源编译器集合,支持C、C++等多种语言。作为C语言程序员的重要工具,GCC具备跨平台性、高度可配置性及丰富的优化选项等特点。通过简单示例,如编译“Hello, GCC!”程序 (`gcc -o hello hello.c`),展示了GCC的基础用法及不同优化级别(`-O0`, `-O1`, `-O3`)对性能的影响。GCC还支持生成调试信息(`-g`),便于使用GDB等工具进行调试。尽管有如Microsoft Visual C++、Clang等竞品,GCC仍因其灵活性和强大的功能被广泛采用。
94 1
|
2月前
|
编译器 C语言 计算机视觉
C语言实现的图像处理程序
C语言实现的图像处理程序
78 0
|
26天前
|
存储 编译器 程序员
C语言程序的基本结构
C语言程序的基本结构包括:1)预处理指令,如 `#include` 和 `#define`;2)主函数 `main()`,程序从这里开始执行;3)函数声明与定义,执行特定任务的代码块;4)变量声明与初始化,用于存储数据;5)语句和表达式,构成程序基本执行单位;6)注释,解释代码功能。示例代码展示了这些组成部分的应用。
39 10
|
29天前
|
Shell Linux API
C语言在linux环境下执行终端命令
本文介绍了在Linux环境下使用C语言执行终端命令的方法。首先,文章描述了`system()`函数,其可以直接执行shell命令并返回结果。接着介绍了更强大的`popen()`函数,它允许程序与命令行命令交互,并详细说明了如何使用此函数及其配套的`pclose()`函数。此外,还讲解了`fork()`和`exec`系列函数,前者创建新进程,后者替换当前进程执行文件。最后,对比了`system()`与`exec`系列函数的区别,并针对不同场景推荐了合适的函数选择。
|
2月前
|
程序员 编译器 C语言
C语言中的预处理指令及其实际应用
C语言中的预处理指令及其实际应用
62 0
|
21天前
|
存储 Serverless C语言
【C语言基础考研向】11 gets函数与puts函数及str系列字符串操作函数
本文介绍了C语言中的`gets`和`puts`函数,`gets`用于从标准输入读取字符串直至换行符,并自动添加字符串结束标志`\0`。`puts`则用于向标准输出打印字符串并自动换行。此外,文章还详细讲解了`str`系列字符串操作函数,包括统计字符串长度的`strlen`、复制字符串的`strcpy`、比较字符串的`strcmp`以及拼接字符串的`strcat`。通过示例代码展示了这些函数的具体应用及注意事项。
|
24天前
|
存储 C语言
C语言程序设计核心详解 第十章:位运算和c语言文件操作详解_文件操作函数
本文详细介绍了C语言中的位运算和文件操作。位运算包括按位与、或、异或、取反、左移和右移等六种运算符及其复合赋值运算符,每种运算符的功能和应用场景都有具体说明。文件操作部分则涵盖了文件的概念、分类、文件类型指针、文件的打开与关闭、读写操作及当前读写位置的调整等内容,提供了丰富的示例帮助理解。通过对本文的学习,读者可以全面掌握C语言中的位运算和文件处理技术。
|
24天前
|
存储 C语言
C语言程序设计核心详解 第七章 函数和预编译命令
本章介绍C语言中的函数定义与使用,以及预编译命令。主要内容包括函数的定义格式、调用方式和示例分析。C程序结构分为`main()`单框架或多子函数框架。函数不能嵌套定义但可互相调用。变量具有类型、作用范围和存储类别三种属性,其中作用范围分为局部和全局。预编译命令包括文件包含和宏定义,宏定义分为无参和带参两种形式。此外,还介绍了变量的存储类别及其特点。通过实例详细解析了函数调用过程及宏定义的应用。
|
29天前
|
Linux C语言
C语言 多进程编程(三)信号处理方式和自定义处理函数
本文详细介绍了Linux系统中进程间通信的关键机制——信号。首先解释了信号作为一种异步通知机制的特点及其主要来源,接着列举了常见的信号类型及其定义。文章进一步探讨了信号的处理流程和Linux中处理信号的方式,包括忽略信号、捕捉信号以及执行默认操作。此外,通过具体示例演示了如何创建子进程并通过信号进行控制。最后,讲解了如何通过`signal`函数自定义信号处理函数,并提供了完整的示例代码,展示了父子进程之间通过信号进行通信的过程。
下一篇
无影云桌面