Flink CDC产品常见问题之Lookup Join之后再分组聚合部分数据从零开始如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。

问题一:Flink CDC里Lookup Join之后,再分组聚合,为什么跑了两天之后有点数据开始从0聚合?


Flink CDC里Lookup Join之后,再分组聚合,为什么跑了两天之后,有点数据开始从0开始聚合了啊?有的数据是正常的,有的数据的清0了,我这边没有设置TTL,状态也会过期吗?


参考回答:

在Flink CDC中进行Lookup Join操作后再进行分组聚合,如果出现数据从0开始聚合的情况,这可能是由于状态后端的过期机制导致的。Flink提供了不同的状态后端来存储作业的状态,每种状态后端都有其特定的配置和行为。即使没有显式设置TTL(Time-To-Live),状态后端可能因为其他原因如内存限制而清除老的状态数据。

为了解决这个问题,您可以考虑以下几个方面:

  1. 检查状态后端配置:确认您使用的状态后端的配置是否正确。例如,如果您使用的是RocksDBStateBackend,可能需要调整其存储大小或刷盘策略。
  2. 状态后端的选择:根据您的具体需求选择合适的状态后端。例如,如果状态数据量非常大,可能需要选择支持外部存储的状态后端。
  3. 监控状态大小和TTL:监控状态的大小和TTL设置,确保状态不会因为达到最大值而被清除。
  4. 代码逻辑检查:检查您的Flink作业代码,确保没有逻辑错误导致状态被错误地重置。
  5. 版本兼容性:确保您使用的Flink CDC版本与Flink版本兼容,并且已经过充分的测试。
  6. 日志和监控:查看Flink的日志和监控指标,以获取更多关于状态被清除的详细信息。
  7. 社区支持:如果问题依然无法解决,可以考虑寻求Flink社区的帮助,可能有其他用户遇到过类似的问题并找到了解决方案。

总之,Flink CDC是一个强大且不断发展的工具,但在实际生产环境中使用时,确实需要基于充分的实践测试来确保稳定性和可靠性。如果您遇到数据不一致的问题,务必仔细检查所有可能的原因,并采取相应的措施来解决问题。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/594730


问题二:Flink CDC里现在3.0有详细的文档没有?


Flink CDC里现在3.0有详细的文档没有?


参考回答:

Flink CDC 3.0有详细文档,并且从2.x版本到3.0版本,Flink CDC发生了显著变化,特别是在处理大数据量ETL任务方面有了改进。

Flink CDC 3.0版本的发布标志着其从一个数据变更捕获的数据源发展成为了基于Flink的端到端流式ETL数据集成框架。社区首先支持实时同步MySQL数据至Apache Doris和StarRocks两条链路。这一版本的推出意味着用户现在可以利用更加完善的工具集来处理数据集成任务。

Flink CDC 2.x版本在处理多张大表(例如每张表拥有上亿条记录)时可能会遇到性能瓶颈。这些问题在3.0版本中得到了优化,通过引入新的架构和技术改进来提升处理能力。例如,3.0版本可能包含了对并发读取、检查点以及无锁读取等方面的重大改进,这些都是为了提高处理大数据集时的系统性能和稳定性。

综上所述,如果您正在考虑使用Flink CDC进行大规模的ETL操作,升级到3.0版本将可能会带来更好的性能和更丰富的功能。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/594731


问题三:Flink CDC里这个错误怎么解决?


Flink CDC里这个错误怎么解决?cdc Caused by: org.apache.kafka.connect.errors.DataException: Invalid value: null used for required field: "day_type", schema type: STRING


参考回答:

这个错误是由于Kafka Connect在处理数据时遇到了一个无效的值。具体来说,它发现"day_type"字段的值为null,而该字段在schema中被定义为STRING类型,并且是必需的。

要解决这个问题,您需要确保源数据中"day_type"字段的值不为null。您可以检查源数据并修复任何导致此问题的异常值或缺失值。另外,您还可以考虑在Kafka Connect的配置文件中设置"day_type"字段为非必需(OPTIONAL)或者提供一个默认值,以便在源数据中缺少该字段时仍然可以正常处理数据。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/594735


问题四:Flink CDC里 oblogproxy的问题是怎么解决的?


Flink CDC里 oblogproxy的问题是怎么解决的?我们找ob原厂他们说不提供2.x对应的oblogproxy怎么办?


参考回答:

Flink CDC 是一个用于捕获数据库变化的工具,它可以实时地将数据库中的数据变更同步到 Flink 流处理平台中。而 oblogproxy 是用于将 OceanBase 数据库的 binlog(二进制日志)转换成可以被 Flink CDC 消费的格式。

如果你们的 OceanBase 版本是 2.x,而原厂的 oblogproxy 不支持这个版本,可以考虑以下几种解决方案:

  1. 自定义实现: 可以考虑自己实现一个 oblogproxy。这需要深入理解 OceanBase 的 binlog 格式以及 Flink CDC 的消费格式,工作量较大。
  2. 降级: 如果由于各种原因无法实现自定义的 oblogproxy,那么可以考虑降级到 OceanBase 的一个较早版本,这个版本应该是有现成的 oblogproxy 支持的。
  3. 其他工具: 如果以上方案都无法实现,那么还可以考虑使用其他工具或方法来实现数据库数据的实时同步,例如使用其他支持 OceanBase 2.x 的 CDC 产品。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/594737


问题五:Flink CDC里flink sql 有啥内置函数 可以将 51,51 变成 [51,52] 吗?


Flink CDC里flink sql 有啥内置函数 可以将 51,51 变成 [51,52] 吗?


参考回答:

问题一:Flink CDC中没有内置函数可以将51,51变成[51,52]。split也不是内置函数。

问题二:Flink CDC中没有内置函数可以直接进行数组去重或数组对比。但是,你可以使用其他方法来实现这些功能。

对于数组去重,你可以使用DISTINCT关键字来对数组元素进行去重。例如:

SELECT DISTINCT column_name FROM table_name;

对于数组对比,你可以使用UNNEST函数将数组拆分为多行,然后使用JOIN操作进行对比。例如:

SELECT a.value
FROM (SELECT UNNEST(array1) AS value FROM table_name) AS a
LEFT JOIN (SELECT UNNEST(array2) AS value FROM table_name) AS b
ON a.value = b.value
WHERE b.value IS NULL;

这个查询将返回在array1中存在但在array2中不存在的元素。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/594744

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
zdl
|
3月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
212 56
|
3月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
4月前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
66 2
|
4月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
4月前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
169 0
|
4月前
|
SQL 运维 数据管理
在对比其他Flink实时计算产品
在对比其他Flink实时计算产品
|
6月前
|
存储 SQL 关系型数据库
实时计算 Flink版产品使用问题之如何高效地将各分片存储并跟踪每个分片的消费位置
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
Java 中间件 流计算
Flink 如何分流数据
Flink 如何分流数据,3种分流方式
4143 0
|
5月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。

相关产品

  • 实时计算 Flink版