使用Tokeniser估算GPT和LLM服务的查询成本

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 将LLM集成到项目所花费的成本主要是我们通过API获取LLM返回结果的成本,而这些成本通常是根据处理的令牌数量计算的。我们如何预估我们的令牌数量呢?Tokeniser包可以有效地计算文本输入中的令牌来估算这些成本。本文将介绍如何使用Tokeniser有效地预测和管理费用。

大语言模型(如GPT)中的"tokens"是指模型用来处理和理解文本的基本单位。令牌是语言模型处理文本时的基本单位,可以是单词、子词(subwords)、字符或者其他更小的文本单元。所以我们在计算令牌时不能简单的将单词按照空格分隔,而将一段文本分解成令牌的过程称为"tokenization",这是预处理文本的重要步骤。

大语言模型中一般都会使用子词作为令牌,这对于处理词汇表中未见过的单词很有帮助。例如,"unhappiness"可能被分解成"un", "happi", "ness"这三个子词。

Tokeniser是一个轻量级、高效的Python包,使用正则表达式进行计数,这样可以在不加载复杂的NLP模型时进行快速的估计:

 importtokeniser

 text="Hello, World!"
 token_count=tokeniser.estimate_tokens(text)
 print(f"Number of tokens: {token_count}")

这个包对于估计输入提示和来自LLM模型的预期响应中的令牌数量特别有用。假设输入提示包含60个令牌,期望的响应长度为150个令牌,那么每个请求的令牌总数为210

有了总令牌计数,就可以根据GPT或其他LLM服务的定价来估计成本。例如,如果服务每1000个令牌收费0.02美元:

每次请求费用: 210/1000∗0.02=0.0042

我们可以将上面的工作封装成一个函数进行总成本预测:

 importtokeniser

 defestimate_cost_with_tokeniser(prompt, max_response_length, cost_per_thousand_tokens):
     input_tokens=tokeniser.estimate_tokens(prompt)
     total_tokens=input_tokens+max_response_length
     cost_per_request= (total_tokens/1000) *cost_per_thousand_tokens
     returncost_per_request

 # Example usage
 prompt="Write a concise guide on estimating GPT and LLM query costs."
 max_response_length=150# Desired response length in tokens
 cost_per_thousand_tokens=0.02# Cost per 1,000 tokens
 estimated_cost=estimate_cost_with_tokeniser(prompt, max_response_length, cost_per_thousand_tokens)
 print(f"Estimated cost per request: ${estimated_cost:.4f}")

把它放到我们的工具类中,这样就可以在任何需要的时候直接调用了

总结

Tokeniser包为开发人员提供了一种实用而有效的方法来估计GPT和LLM查询令牌数,这对于管理和预测使用成本至关重要。通过将简单的令牌计数合并到成本估算过程中,可以确保项目更有效的预算管理。

https://avoid.overfit.cn/post/064552e1902b468d834e7d65399dcd04

作者:Eugene Evstafev

目录
相关文章
|
3月前
|
人工智能 自然语言处理
公理训练让LLM学会因果推理:6700万参数模型比肩万亿参数级GPT-4
【8月更文挑战第3天】新论文提出“公理训练”法,使仅有6700万参数的语言模型掌握因果推理,性能媲美万亿级GPT-4。研究通过大量合成数据示例教授模型因果公理,实现有效推理并泛化至复杂图结构。尽管面临合成数据需求大及复杂关系处理限制,此法仍为语言模型的因果理解开辟新途径。[链接: https://arxiv.org/pdf/2407.07612]
68 1
|
3月前
|
存储 人工智能 异构计算
大模型下HPE GPT解决问题之确保服务高效可靠如何解决
大模型下HPE GPT解决问题之确保服务高效可靠如何解决
33 0
|
2月前
|
人工智能 自然语言处理 算法
GPT-4无师自通预测蛋白质结构登Nature子刊!LLM全面进军生物学,AlphaFold被偷家?
【9月更文挑战第17天】近日,《自然》子刊发表的一篇论文展示了GPT-4在预测蛋白质结构方面的惊人能力,这一突破不仅揭示了大型语言模型在生物学领域的巨大潜力,还可能影响传统预测工具如AlphaFold的地位。研究人员发现,GPT-4仅通过自然语言处理就能准确预测蛋白质的三维结构,包括常见的氨基酸序列和复杂的α-螺旋结构。实验结果显示,其预测精度与实际结构非常接近。这一成果意味着自然语言处理技术也可应用于生物学研究,但同时也引发了关于其局限性和对现有工具影响的讨论。论文详情见:https://www.nature.com/articles/s41598-024-69021-2
49 8
|
23天前
|
开发工具 git
LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
44 0
|
2月前
|
编解码 定位技术 计算机视觉
多模态LLM视觉推理能力堪忧,浙大领衔用GPT-4合成数据构建多模态基准
【9月更文挑战第2天】浙江大学领衔的研究团队针对多模态大型模型(MLLM)在抽象图像理解和视觉推理上的不足,提出了一种利用GPT-4合成数据构建多模态基准的方法。该研究通过合成数据提高了MLLM处理图表、文档等复杂图像的能力,并构建了一个包含11,193条指令的基准,涵盖8种视觉场景。实验表明,这种方法能显著提升模型性能,但依赖闭源模型和高计算成本是其局限。论文详细内容见:https://arxiv.org/pdf/2407.07053
75 10
|
3月前
|
数据采集 人工智能
4轮暴训,Llama 7B击败GPT-4!Meta等让LLM分饰三角自评自进化
【8月更文挑战第20天】近期,Meta等机构提出了一项让大型语言模型(LLM)自我评估与改进的研究,通过“Meta-Rewarding”方法,使模型分饰生成、评估及改进三角色,实现了高效自我迭代。实验证明,经四轮强化训练后,Llama 7B模型性能大幅提升,在多项任务上超越GPT-4等先进模型,展示了LLM自我优化的巨大潜力。详情参阅论文:https://arxiv.org/abs/2407.19594。
44 7
|
3月前
|
安全 异构计算
为大型语言模型 (LLM) 提供服务需要多少 GPU 内存?
为大型语言模型 (LLM) 提供服务需要多少 GPU 内存?
114 0
为大型语言模型 (LLM) 提供服务需要多少 GPU 内存?
|
3月前
|
人工智能 自然语言处理 算法
【人工智能】探索GPT-4o mini:解锁成本效益新纪元,赋能开发创新与效率
在人工智能领域的浩瀚星空中,OpenAI再次以其创新之光照亮了前行的道路,推出了备受瞩目的GPT-4o mini模型。这款被誉为“迄今为止最具成本效益的小模型”不仅继承了GPT系列强大的自然语言处理能力,更在成本控制上实现了重大突破,为开发者们开启了一扇通往高效与创新的大门。
63 1
|
3月前
|
机器学习/深度学习 边缘计算 缓存
|
4月前
|
机器学习/深度学习 自然语言处理 数据挖掘
RouteLLM:高效LLM路由框架,可以动态选择优化成本与响应质量的平衡
新框架提出智能路由选择在强弱语言模型间,利用用户偏好的学习来预测强模型胜率,基于成本阈值做决策。在大规模LLMs部署中,该方法显著降低成本而不牺牲响应质量。研究显示,经过矩阵分解和BERT等技术训练的路由器在多个基准上提升性能,降低强模型调用,提高APGR。通过数据增强,如MMLU和GPT-4评审数据,路由器在GSM8K、MMLU等测试中展现出色的性能提升和成本效率。未来将测试更多模型组合以验证迁移学习能力。该框架为LLMs部署提供了成本-性能优化的解决方案。
111 2