Apache Hudi 0.12.0版本重磅发布!

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Apache Hudi 0.12.0版本重磅发布!

Presto-Hudi 连接器

从 PrestoDB 0.275 版本开始,用户现在可以利用原生 Hudi 连接器来查询 Hudi 表。它与 Hive 连接器中的 Hudi 支持相当。要了解有关连接器使用的更多信息,请查看 prestodb 文档[1]

存档点以外的存档

Hudi 支持保存点和恢复功能,这对备份和灾难恢复场景很有用。更多信息查看这里[2]。在 0.12.0 之前,给定表的归档在第一次保存点提交之后就无法再次提交,但是社区已经要求放宽这个限制,以便可以在活动时间线中保留一些粗粒度的提交并执行时间点查询。因此在 0.12.0 中用户现在可以通过启用 hoodie.archive.beyond.savepoint写入配置,让存档在保存点提交之后继续进行,这为 Hudi 用户开启了新的机遇。例如通过每天为较旧的提交添加一个保存点(假设 > 30 天),可以将提交保留多年。并使用as.of.instant和任何较旧的保存点提交查询 hudi 表。这样 Hudi 不需要在活动时间线中为较旧的提交保留每个提交。

注意:如果启用此功能,则无法支持还原。此限制将在未来的版本中放宽,可以在 HUDI-4500 中跟踪此功能的开发。

基于文件系统的锁

对于使用乐观并发控制的多个写入器,Hudi 已经支持基于Zookeeper、Hive Metastore 或 Amazon DynamoDB。在0.12.0版本中,新添加基于文件系统的锁。不像需要其他锁提供者中的外部系统,此实现基于原子获取/释放锁底层文件系统的创建/删除操作。要使用此锁,用户需要设置以下配置

hoodie.write.concurrency.mode=optimistic_concurrency_control
hoodie.write.lock.provider=org.apache.hudi.client.transaction.lock.FileSystemBasedLockProvider

Deltastreamer 终止策略

用户现在可以使用 deltastreamer 连续模式配置写入后终止策略。例如如果连续 5 次没有来自源的新数据,用户可以配置优雅关闭。这是终止策略的接口。

/**
 * Post write termination strategy for deltastreamer in continuous mode.
 */
public interface PostWriteTerminationStrategy {
  /**
   * Returns whether deltastreamer needs to be shutdown.
   * @param scheduledCompactionInstantAndWriteStatuses optional pair of scheduled compaction instant and write statuses.
   * @return true if deltastreamer has to be shutdown. false otherwise.
   */
  boolean shouldShutdown(Option<Pair<Option<String>, JavaRDD<WriteStatus>>> scheduledCompactionInstantAndWriteStatuses);
}

这可能有助于引导新表,与其做一个批量加载或bulk_insert,利用大型集群写入大量数据,不如在所有数据都被引导后,在连续模式下启动deltastreamer并添加一个关闭策略来终止。这样每个批次可以更小,并且可能不需要大型集群来引导数据,Hudi内置一个开箱即用的具体实现,NoNewDataTerminationStrategy[3]。用户可以随意实施他们认为合适的策略。

Spark 3.3 支持

0.12.0添加了 Spark 3.3 支持,使用 Spark 3.3 的用户可以使用 hudi-spark3.3-bundlehudi-spark3-bundle。将继续支持 Spark 3.2、Spark 3.1 和 Spark 2.4。请查看迁移指南以获取bundle更新[4]

Spark SQL 支持改进

• 通过调用Call Procedure支持升级、降级、引导、清理、回滚和修复。

• 支持分析表。

• 通过 Spark SQL 支持创建/删除/显示/刷新索引语法。

Flink 1.15 支持

Flink 1.15.x 与 Hudi 集成,编译代码时使用配置文件参数 -Pflink1.15 适配版本。或者使用 hudi-flink1.15-bundle。Flink 1.14 和 Flink 1.13 将继续得到支持,请查看迁移指南以获取bundle更新[5]

Flink 集成改进

• 批处理模式读取支持数据跳过,设置 SQL 选项 metadata.enabledhoodie.metadata.index.column.stats.enableread.data.skipping.enabled为 true 以启用它。

• 添加了一个基于 HMS 的 Flink 目录,目录标识符为 hudi。可以直接通过 API 实例化目录,也可以使用 CREATE CATALOG语法来创建它。指定目录选项 'mode' = 'hms'以切换到 HMS 目录。默认情况下,目录处于 dfs模式。

• Flink INSERT 操作支持异步Clustering,设置 SQL 选项 clustering.schedule.enabledclustering.async.enabled 为 true 以启用它。启用此功能时将异步连续调度Clustering子管道,以将小文件连续合并为更大的文件。

性能改进

这个版本带来了更多的改进,使 Hudi 成为性能最好的湖存储格式。一些显着的改进是:

• 通过 Spark Datasource与 sql 缩小了写入的性能差距。以前数据源写入速度更快。

• 所有内置密钥生成器都实现了更高性能的 Spark 特定 API。

• 将批量插入操作中的 UDF 替换为 RDD 转换以降低 serde 成本。

• 优化了数据跳过中的列统计索引性能。

我们最近将 Hudi 与 TPC-DS 工作负载进行了基准测试。请查看我们的博客[6]了解更多详情。

迁移指南

在此版本中,下面列出了一些 API 和配置更新,这些更新保证了新的表格版本。因此,最新的表版本[7]是 5。对于旧版本的现有 Hudi 表,将自动执行一次性升级步骤。在升级到 Hudi 0.12.0 之前,请注意以下更新。

配置更新

在此版本中,一些配置的默认值已更改。它们如下:

hoodie.bulkinsert.sort.mode:此配置用于确定批量插入记录的排序模式。它的默认值已从 GLOBAL_SORT 更改为 NONE,这意味着不进行排序,并且在开销方面与 spark.write.parquet() 匹配。

hoodie.datasource.hive_sync.partition_value_extractor:此配置用于在 Hive 同步期间提取和转换分区值。其默认值已从 SlashEncodedDayPartitionValueExtractor更改为 MultiPartKeysValueExtractor。如果您依赖之前的默认值(即没有明确设置),则需要将配置设置为 org.apache.hudi.hive.SlashEncodedDayPartitionValueExtractor。从此版本开始,如果未设置此配置并启用 Hive 同步,则将根据分区字段数以及是否启用 Hive 样式分区自动推断分区值提取器类。

• 如果未手动设置,将从其他配置的值推断以下配置:

META_SYNC_BASE_FILE_FORMAT:从 org.apache.hudi.common.table.HoodieTableConfig.BASE_FILE_FORMAT 推断

META_SYNC_ASSUME_DATE_PARTITION:从 org.apache.hudi.common.config.HoodieMetadataConfig.ASSUME_DATE_PARTITIONING 推断

META_SYNC_DECODE_PARTITION:从 org.apache.hudi.common.table.HoodieTableConfig.URL_ENCODE_PARTITIONING 推断

META_SYNC_USE_FILE_LISTING_FROM_METADATA:从 org.apache.hudi.common.config.HoodieMetadataConfig.ENABLE 推断

API 更新

SparkKeyGeneratorInterface中,getRecordKeyAPI 的返回类型已从 String 更改为 UTF8String。

// Before
String getRecordKey(InternalRow row, StructType schema); 
// After
UTF8String getRecordKey(InternalRow row, StructType schema);

Fallback分区

如果分区字段值为 null,则 Hudi 具有回退机制,而不是使写入失败。在 0.9.0 之前,__HIVE_DEFAULT_PARTITION__被用作备用分区。在 0.9.0 之后,由于一些重构,fallback 分区更改为default分区,此默认分区不适用于某些查询引擎。因此我们将备用分区从 0.12.0 切换到 __HIVE_DEFAULT_PARTITION__。我们添加了一个升级步骤,如果现有的 Hudi 表有一个名为 default的分区,我们将无法升级。用户应将此分区中的数据重写到名为 __HIVE_DEFAULT_PARTITION__分区中。但是如果您有意将分区命名为默认分区,则可以使用配置 hoodie.skip.default.partition.validation绕过它。

Bundle更新

• hudi-aws-bundle 从 hudi-utilities-bundle 或 hudi-spark-bundle 中提取与 aws 相关的依赖项。为了使用 Glue 同步、Cloudwatch 指标报告器或 DynamoDB 锁提供程序等功能,用户需要提供 hudi-aws-bundle jar 以及 hudi-utilities-bundle 或 hudi-spark-bundle jar。

• 添加了 Spark 3.3 支持;使用 Spark 3.3 的用户可以使用 hudi-spark3.3-bundle 或 hudi-spark3-bundle(旧版包名称)。

• Spark 3.2 将继续通过 hudi-spark3.2-bundle 支持

• Spark 3.1 将继续通过 hudi-spark3.1-bundle 支持

• Spark 2.4 将继续通过 hudi-spark2.4-bundle 或 hudi-spark-bundle(旧包名称)支持

• 增加 Flink 1.15 支持;使用 Flink 1.15 的用户可以使用 hudi-flink1.15-bundle

• Flink 1.14 将继续通过 hudi-flink1.14-bundle 支持

• Flink 1.13 将继续通过 hudi-flink1.13-bundle 支持

感谢

感谢参与0.12.0版本的所有贡献者,欢迎广大数据湖爱好者加入Apache Hudi社区,欢迎star & fork https://github.com/apache/hudi

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
4月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。
|
28天前
|
SQL 存储 Apache
Apache Doris 3.0.3 版本正式发布
亲爱的社区小伙伴们,Apache Doris 3.0.3 版本已于 2024 年 12 月 02 日正式发布。该版本进一步提升了系统的性能及稳定性,欢迎大家下载体验。
|
2月前
|
Dubbo 安全 应用服务中间件
Apache Dubbo 正式发布 HTTP/3 版本 RPC 协议,弱网效率提升 6 倍
在 Apache Dubbo 3.3.0 版本之后,官方推出了全新升级的 Triple X 协议,全面支持 HTTP/1、HTTP/2 和 HTTP/3 协议。本文将围绕 Triple 协议对 HTTP/3 的支持进行详细阐述,包括其设计目标、实际应用案例、性能测试结果以及源码架构分析等内容。
|
3月前
|
前端开发 Java API
Apache Seata(incubating) 首个版本重磅发布!
2.1.0 是 Seata 进入 Apache 基金会的第一个 Release Version。此次发布将 io.seata 包名更改为 org.apache.seata。除了按原有的 Roadmap 技术演进外,2.1.0 进行了大量兼容性工作,实现了 API、数据和协议的兼容。用户无需修改原有的 API 和配置,即可实现到 Apache 版本的平滑升级。
130 19
Apache Seata(incubating) 首个版本重磅发布!
|
2月前
|
SQL 存储 Java
Apache Doris 2.1.7 版本正式发布
亲爱的社区小伙伴们,**Apache Doris 2.1.7 版本已于 2024 年 11 月 10 日正式发布。**2.1.7 版本持续升级改进,同时在湖仓一体、异步物化视图、半结构化数据管理、查询优化器、执行引擎、存储管理、以及权限管理等方面完成了若干修复。欢迎大家下载使用。
|
3月前
|
存储 SQL 缓存
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
从 3.0 系列版本开始,Apache Doris 开始支持存算分离模式,用户可以在集群部署时选择采用存算一体模式或存算分离模式。基于云原生存算分离的架构,用户可以通过多计算集群实现查询负载间的物理隔离以及读写负载隔离,并借助对象存储或 HDFS 等低成本的共享存储系统来大幅降低存储成本。
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
|
4月前
|
SQL 存储 缓存
Apache Doris 2.1.6 版本正式发布
2.1.6 版本在 Lakehouse、异步物化视图、半结构化数据管理持续升级改进,同时在查询优化器、执行引擎、存储管理、数据导入与导出以及权限管理等方面完成了若干修复
|
6月前
|
SQL JSON Apache
Apache Doris 2.1.5 版本正式发布
在湖仓一体、多表物化视图、半结构化数据分析等方面进行了全面更新及改进,同时在倒排索引、查询优化器、查询引擎、存储管理等 10 余方向上完成了若干问题修复
|
6月前
|
SQL 分布式计算 Apache
Apache Doris + Apache Hudi 快速搭建指南|Lakehouse 使用手册(一)
本文将在 Docker 环境下,为读者介绍如何快速搭建 Apache Doris + Apache Hudi 的测试及演示环境,并对各功能操作进行演示,帮助读者快速入门。
Apache Doris + Apache Hudi 快速搭建指南|Lakehouse 使用手册(一)
|
7月前
|
关系型数据库 MySQL BI
Apache Doris 2.0.12 版本正式发布
Apache Doris 2.0.12发布,含99项改进和修复。

热门文章

最新文章

推荐镜像

更多