🎯函数与所有权
将值传递给函数与给变量赋值的原理相似。向函数传递值可能会移动或者复制,就像赋值语句一样。
fn main() { let s = String::from("hello"); // s 进入作用域 takes_ownership(s); // s 的值移动到函数里 ... // ... 所以到这里不再有效 let x = 5; // x 进入作用域 makes_copy(x); // x 应该移动函数里, // 但 i32 是 Copy 的, // 所以在后面可继续使用 x } // 这里,x 先移出了作用域,然后是 s。但因为 s 的值已被移走, // 没有特殊之处 fn takes_ownership(some_string: String) { // some_string 进入作用域 println!("{}", some_string); } // 这里,some_string 移出作用域并调用 `drop` 方法。 // 占用的内存被释放 fn makes_copy(some_integer: i32) { // some_integer 进入作用域 println!("{}", some_integer); } // 这里,some_integer 移出作用域。没有特殊之处
🎯返回值与所有权
fn main() { let s1 = gives_ownership(); // gives_ownership 将返回值 // 转移给 s1 let s2 = String::from("hello"); // s2 进入作用域 let s3 = takes_and_gives_back(s2); // s2 被移动到 // takes_and_gives_back 中, // 它也将返回值移给 s3 } // 这里,s3 移出作用域并被丢弃。s2 也移出作用域,但已被移走, // 所以什么也不会发生。s1 离开作用域并被丢弃 fn gives_ownership() -> String { // gives_ownership 会将 // 返回值移动给 // 调用它的函数 let some_string = String::from("yours"); // some_string 进入作用域。 some_string // 返回 some_string // 并移出给调用的函数 // } // takes_and_gives_back 将传入字符串并返回该值 fn takes_and_gives_back(a_string: String) -> String { // a_string 进入作用域 // a_string // 返回 a_string 并移出给调用的函数 }
变量的所有权总是遵循相同的模式:
- 将值赋给另一个变量时移动它。
- 当持有堆中数据值的变量离开作用域时,其值将通过
drop
被清理掉,除非数据被移动为另一个变量所有。
🎯借用与引用
fn main() { let s1 = String::from("hello"); let len = calculate_length(&s1); println!("The length of '{}' is {}.", s1, len); } fn calculate_length(s: &String) -> usize { s.len() }
注意变量声明和函数返回值中的所有元组代码都消失了。其次,注意我们传递 &s1 给 calculate_length,同时在函数定义中,我们获取 &String 而不是 String。这些 & 符号就是 引用,它们允许你使用值但不获取其所有权。
补充:注意:与使用 & 引用相反的操作是 解引用(dereferencing),它使用解引用运算符,*。
我们将创建一个引用的行为称为 借用(borrowing)。
正如变量默认是不可变的,引用也一样。(默认)不允许修改引用的值。
可变引用:
fn main() { let mut s = String::from("hello"); change(&mut s); } fn change(some_string: &mut String) { some_string.push_str(", world"); }
提醒:如果你有一个对该变量的可变引用,你就不能再创建对该变量的引用。
数据竞争(data race)类似于竞态条件,它可由这三个行为造成:
- 两个或更多指针同时访问同一数据。
- 至少有一个指针被用来写入数据。
- 没有同步数据访问的机制。
我们也不能在拥有不可变引用的同时拥有可变引用:
不可变引用的用户可不希望在他们的眼皮底下值就被意外的改变了!然而,多个不可变引用是可以的,因为没有哪个只能读取数据的人有能力影响其他人读取到的数据。
悬垂引用:
在具有指针的语言中,很容易通过释放内存时保留指向它的指针而错误地生成一个 悬垂指针(dangling pointer)。
在 Rust 中编译器确保引用永远也不会变成悬垂状态:当你拥有一些数据的引用,编译器确保数据不会在其引用之前离开作用域。