C语言数据结构之排序整合与比较(冒泡,选择,插入,希尔,堆排序,快排及改良,归并排序,计数排序)

简介: C语言数据结构之排序整合与比较(冒泡,选择,插入,希尔,堆排序,快排及改良,归并排序,计数排序)

前言:排序作为数据结构中的一个重要模块,重要性不言而寓,我们的讲法为下理论掌握大致的算法结构,再上代码及代码讲解,助你一臂之力。



一,冒泡

冒泡排序应该是大家学习以来第一个认识的排序方法,它的思想也是简单暴力,从第一元素开始每一个元素和前一个元素比较,如果不符合顺序就交换位置,直到最后一个元素,每一趟排序都可以排出那趟中一个最大的值并将它放到末尾位置

这是第一趟排序,第二次排序的话因为最后一个元素的位置已经排好了,所以可以少排一个元素

最后一趟就两个元素了,自然简单

最后得到 6 7 8 9。排序就成功啦

void BubbleSort(int* a, int n) {//n是数组的元素个数
  for (int i = n - 1; i > 0; i--) {//外层循坏,因为每次只能拍好一个元素,所以需要排多次
    for (int j = 0; j < i; j++) {//内层循坏,每次两两比较
      if (a[j] > a[j + 1])  
        swap(a + j, a + j + 1);//交换函数
    }
  }
}

二,选择排序

选择排序相较于冒泡排序更加简单,它的核心思想是每次从序列中选出一个最大的和最小的,然后继续比较中间的序列,直到序列就一个元素

注意它和冒泡排序之间的差距,冒泡排序每趟排序可能对数组进行了大改动,而选择排序只会交换最大和最小以及它们应该所处的位置。但它们都有相同点,时间复杂度都是O(n^2)。

选择有一个大坑,可能我们初写是想不出来的,但最后结果会让我们失败。先看一组排序,我们不进行改良,用原思路解决

这是为什么呢,不难看出是因为MAX处于了一个特殊位置,导致max的位置发生了改变,达不到我们预期的特点,那我们应该怎么解决呢,答案就算加一个判断和更新,看我接下来的代码

void SelectSort(int* a, int n) {
  int max, min;
  int k = n;
  for (int i = 0; i < k; i++, k--) {//外层循坏,每次少排两个元素
    max = i;//先让max和min都赋值为第一个元素
    min = i;
    for (int j = i+1; j < k; j++) {//内层循坏,每次排出两个元素的位置
      if (a[j] > a[max])//对大小值更新
        max = j;
      if (a[j] < a[min])
        min = j;
    }
    if (max == i)//如果max处于特殊位置,我们就提前交换更新位置,防止出错
    max = min;   
    swap(a + min, a + i);
    swap(a + max, a + k - 1);
  }
}

三,插入排序

插入排序有一点像冒泡排序但是它们还是有一定的差距,插入排序是也是每趟将一个元素放到它应该所处的位置,但它是每个元素和前面一个元素进行比较,如果顺序不符合就交换,如果交换之后还不符合的话就继续交换,直到处于它与前面的元素不符合交换条件。

插入排序像一个跳级生,直到处于自己应该属于的位置,而冒泡排序稳扎稳打,每次都会全部比较。因此再大多数情况下插入排序会优于冒泡排序。

void InsertSort(int* a, int n) {
  for (int i = 1; i < n; i++) {//外层循坏,每次会排好一个元素
    int j = i;
    while (a[j] < a[j - 1]) {  //如果和前面元素比较结果不符合要求,就不断交换直到位置正确
      swap(a + j, a + j - 1);
      j--;        //像前面推进,方便比较
    }
  }
}

希尔排序前言:我们来思考一个问题,插入排序啥时候效率最好,啥时候最坏呢,从上面代码我们可以看出来,外层循坏我们是无法改变的,我们能改变的就是内层循坏,那我们如何减少内存排序的次数呢?没错就是内存循坏条件不符合,另一个方面来说就是让序列排序之前尽量接近有序,如果元素接近有序,它的时间复杂度就会接近O(n)。这个优化之后就是希尔排序啦

四,希尔排序

在上段话中我们可以知道当数据接近有序的话,那么插入排序的效率就越快,那如果我们该如何让数据接近有序呢?这里我们借鉴插入排序,我们如果把数据把数据间隔为gap的数据分为一组,并且对它们进行排序,最后K逐渐减小(一般默认gap初始值为n/2,每次减半),当gap=1时就是一个完全的插入排序,而之前的排序已经将数据进行预排序,因此最后一次排序的时间复杂度会小于O(n^2)。到底它的时间复杂度会为多少,这个涉及到了数学知识,不过我们的先辈大概算出来范围为O(n^1.3)。这有时一个优秀的排序算法,接下来我们看图掌握细节。

这个就是间隔为gap的值进行插入排序,每次gap值除2,这样可以尽量把大的数据带到前面(或者把小的数据带到前面,),把小的数据带到后面。相当于预排序了,最后一次完全插入排序就只是作为补充和检查,不会出现每次都要交换到头。

void ShellSort(int* a, int n) {
  int gap = n / 2;//设置gap值
  for (int i = gap; i > 0; i /= 2) {//i=gap,每次除2
    for (int j = i; j < n; j++) {//从gap位置开始,每次和前面距离为gap的距离比较并适当交换
      int k = j;
      while (k - i >= 0) {  //这个只是为了交换到0,函数里面有如果不符合就会跳出循坏的语句
        if (a[k] < a[k - i])
          swap(a + k, a + k - i); //不符合就交换,循坏继续
        else break;   //符号就跳出
        k -= gap;     //间隔为gap为一组
      }
    }
  }
}

五,堆排序

我以前写的文章链接CSDN

六,快排两种改良及非递归实现、

快排我们可能在C的库中见过并且用过,那么它的思想是怎么样的呢?快排是每次只排好一个数据,把大于这个数据的元素放到它的一边,小于它的数据放到另一边,然后把左右分别排好,那么具体怎么实现呢?快排会每次选取一个数据作为标记数据,这个数据一般是要进行筛选,防止取到了最大值和最小值,如果取到了的话,那么它的时间复杂度会到O(n^2),这个大家可以先听完再去思考为什么时间复杂度会上升。取到之后,我们的第一种思想是从数组左右开始比较,左边找到一个大于这个数据的值,右边找到一个小于这个数据的值,然后交换两个数据的值,最后交换标记数据和左右相遇的位置。

接下来看第一种思路的代码实现

int PartSort1(int* a, int left, int right) {
  if (left >= right)
    return;
  int mid = Middlenum(a, left, right, (left + right) / 2);//三数取中
  swap(a + mid, a + left);  //将标记数据换到下标为0的位置
  int left1 = left+1;       //左右初始化
  int right1 = right;
  int key = left;           //记录标记数据
  while (left1 < right1) {      
    while (left1<right1 && a[right1]>=a[key])//找大
      right1--;
    while (left1<right1 && a[left1]<=a[key])//找小
      left1++;
    if(right1!=left1)
    swap(a + right1, a + left1);  //左右下标不相等交换
  }
  swap(&a[key], &a[right1]);       //把标记数据放到应该处于的位置
  PartSort1(a, left, left1-1);    //左右数据递归处理
  PartSort1(a, right1+1,right );
}

有大佬觉得每次交换麻烦,于是想出来一种方法,我们直接把原来属于标记数据的位置再逻辑上变为一个坑,发现大于的数据就把数据挪到“坑”里面,交换坑和数据位置,其实就是覆盖,将坑的下标换为大于标记数据的位置,再找小于标记数据的位置,和坑交换,最后交换左右相遇位置和坑的位置,将标记数据放入坑里面,再左右递归即可。

挖坑法代码实现:

int PartSort2(int* a, int left, int right) {
  if (left >= right)
    return;
  int mid = Middlenum(a, left, right, (left + right) / 2);//三数取中
  swap(a + mid, a + left);  //将标记数据换到下标为0的位置
  int left1 = left + 1;     //左右初始化
  int right1 = right;
  int key = a[left];          //记录标记数据
  int hole = left;      //挖坑下标
  while (left1 < right1) {
    while (left1 < right1 && a[right1] >= key)//找大
      right1--;
    a[hole] = a[right1];        //和坑交换位置
    hole = right1; 
    while (left1 < right1 && a[left1] <= key) //找小
      left1++;
    a[hole] = a[left1];   //和坑交换位置
    hole = left1;
  }
  a[hole] = key;    //把标记数据放入坑
  PartSort1(a, left, left1 - 1);      //左右递归排序
  PartSort1(a, right1 + 1, right);
}

第三种思路类似于推箱子,两个指针从非标记数据的第一个数据开始,把大于标记数据的值往后面推,小于标记数据的值往前面推,最后交换走的慢的那个指针位置和标记数据的值,因为此时恰好这个指针的前面是小于标记数据的值,后面是大于标记数据的值。

双指针法:

int PartSort3(int* a, int left, int right) {
  if (left >= right)
    return;
  int mid = Middlenum(a, left, right, (left + right) / 2);//三数取中
  swap(a + mid, a + left);  //将标记数据换到下标为0的位置
  int prv = left;       //双指针位置初始化
  int cur = left + 1;
  int key = left;     
  while (cur <=right) {         //防止快指针越界访问
    if (a[cur] <=a[key] && ++prv != cur)  //两个指针不相等时,并且找到了大于标记数据的值时交换
      swap(a + prv, a + cur);
    cur++;
  }
  swap(a + key, a + prv);      //交换慢指针和标记数据的值
  PartSort3(a, left, prv-1);     //左右递归排序
  PartSort3(a, prv+1, right);
}

现在我们来讲非递归实现,为什么我们要将这个呢?这涉及到了电脑的内存分配,递归是要占用比较多的栈空间,而栈空间很小,因此我们不能过于利用栈空间,属于非递归就是解决这个问题。递归改非递归的核心就是根据思想模拟,比如递归我们可以参考栈,先进后出,我们也就是利用递归的思想来解决这个问题

代码实现:

void QuickSortNonR(int* a, int left, int right) {
  Stack* ps;          //建栈
  ps = (Stack*)malloc(sizeof(Stack));
  StackInit(ps);    //初始化栈
  StackPush(ps, left);    //把原始位置的左右下标入栈
  StackPush(ps, right);
  while (StackEmpty(ps)!=1) {       //只要栈不为空就继续
    int right1 = StackTop(ps);   //把左右下标取出来并出栈
    StackPop(ps);
    int left1 = StackTop(ps);
    StackPop(ps);
    if (left1 >= right1)    //对标记数据排序,省略注释,不理解看前面讲解
      continue;
    int mid = Middlenum(a, left1, right1, (left1 + right1) / 2);
    swap(a + mid, a + left1);
    int prv = left1;
    int cur = left1 + 1;
    int key = left1;
    while (cur <= right1) {
      if (a[cur] <= a[key] && ++prv != cur)
        swap(a + prv, a + cur);
      cur++;
    }
    swap(a + key, a + prv);
    StackPush(ps, prv+1);       //把排序之后的左右部分入栈
    StackPush(ps,right1);
    StackPush(ps, left1);
    StackPush(ps, prv - 1);
  }
}

栈的代码及讲解:CSDN

快排时间复杂度讲解

此时是最理想的状态,每次排序刚刚好取到中间值,时间复杂度为nlogn

我们看最差的状态

不难发现此时的时间复杂度为n^2,因此我们需要三数取中防止一直取到最大值或者最小值。

七,归并排序

归并排序我们不用文章描述,我们直接看图

归并排序就是分解为一块快小块进行排序,然后将小快排序合并,中间有一个细节,我们不能边比较边改变原始数组,不然会将数组覆盖,无法比较成功,因此我们还需要一个额外的数组,我们来看代码

void MergeSort(int* a, int n) {
  int* temp = (int*)malloc(sizeof(a));//开一个数组用来记录改变
  Merge(a, temp, 0, n);
}
void Merge(int* a, int *temp,int left, int right) {
  if (left + 1 < right) {                      //先进行左右递归排序分解为小块直到只有一个元素
    Merge(a, temp, left, (left + right) / 2);
    Merge(a, temp, (left + right) / 2+1, right);
  }
  if (left == right)      //此时只有一个元素无法比较,直接返回
    return;
  int count = left;       //接下来会用来标记
  int mid = (left + right) / 2;   //找到两需要排序数组的边界,作为接下来的循坏条件
  int left1 = left;         //寻找左右数组起始位置2
  int right1 = (left+right)/2+1;
  while (left1 <= mid && right1 <= right) {  //越界就结束循坏
    if (a[left1] < a[right1]) {      //左右比较放进临时数组
      temp[count++] = a[left1++];
    }
    else
      temp[count++] = a[right1++];
  }
  while (left1 <= mid)          //此时只有一个数组完全录入了临时数组,我们需要把另一个数组录入
    temp[count++] = a[left1++];
  while (right1 <= right)
    temp[count++] = a[right1++];
  memcpy(a + left, temp + left, (right-left+1)*4);//C语言库函数将改变的值复制回原数组,方便下一次排序
}

非递归实现改怎么搞呢?我们这里不能用栈,因为归并排序是需要同层一层递归数据进行比较,显然栈是无法实现的,我们还是老老实实用循坏两两比较,设置一个gap值作为每个数组的大小,然后进行++,但是我们要考虑越界问题,还有gap每次乘2.

void MergeSortNonR(int* a, int n) {
  int gap = 1;  //gap值初始化
  int* temp = (int*)malloc(sizeof(int) * n);  //开辟临时空间作为中转
  while (gap < n) {    //只要gap小于数组大小就能比较
    for (int i = 0; i < n; i += 2*gap) {      //每一次比较可能有大于两个数字,所以要循坏直到没有数据
      int left = i;           //左右数组边界赋值
      int right = i + gap;
      int count=i;          //标记临时数组的进度
    while(right < n && left < i + gap && right < i + 2 * gap) {   //只要不越界就继续比较
        if (a[left] > a[right])
          temp[count++] = a[right++];
        else
          temp[count++] = a[left++];
      }
      while (left < i + gap && left < n)//此时只有一个数组完全录入了临时数组,我们需要把另一个数组录入
        temp[count++] = a[left++];
      while(right < i + 2 * gap && right < n)
        temp[count++] = a[right++];
      memcpy(a + i, temp + i, (count - i) * 4);//C语言库函数将改变的值复制回原数组,方便下一次排序
    }
    gap *= 2;//gap值改变
  }
}

八,计数排序

计数排序人如其名,用数组就是记录每个数字出现的次数,利用数组特性,将数字按顺序直接放进去,我们需要记录最大值和最小值来确定数组的范围,所以我们返回原数组时需要加上最小值即可,但是计数排序有很明显的缺点,就是只能排整形,并且如果最大值和最小值差距过大会浪费很多空间。

void CountSort(int* a, int n) {
  int max = a[0]; //寻找最大最小的变量
  int min = a[0]; 
  for (int i = 0; i < n; i++) {    //循坏找到最大最小值
    if (a[i] > max)
      max = a[i];
    if (a[i] < min)
      min = a[i];
  }
  int* arr = (int*)malloc(sizeof(int) * (max-min)); //开辟记录数组
  memset(arr, 0, sizeof(int) * (max - min)); //C语言库函数数组全部初始化为0
  for (int i = 0; i < n; i++)
    arr[a[i]-min]++;       //如果有这个数就对应位置加1
  for (int i = 0, j = 0; i < n; i++) {   //返回原数组,通过覆盖实现
    while (arr[j] == 0)
      j++;           //先找到存在的数的位置
    a[i] = j + min;  //覆盖原始数组
    arr[j]--;    //覆盖之后就减减
  }
}

博客创造不易,耗费颇多心血,如果你有收获希望点赞收藏加关注

目录
打赏
0
0
0
0
10
分享
相关文章
|
2月前
|
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
281 9
【C++数据结构——内排序】二路归并排序(头歌实践教学平台习题)【合集】
本关任务是实现二路归并算法,即将两个有序数组合并为一个有序数组。主要内容包括: - **任务描述**:实现二路归并算法。 - **相关知识**: - 二路归并算法的基本概念。 - 算法步骤:通过比较两个有序数组的元素,依次将较小的元素放入新数组中。 - 代码示例(以 C++ 为例)。 - 时间复杂度为 O(m+n),空间复杂度为 O(m+n)。 - **测试说明**:平台会对你编写的代码进行测试,提供输入和输出示例。 - **通关代码**:提供了完整的 C++ 实现代码。 - **测试结果**:展示代码运行后的排序结果。 开始你的任务吧,祝你成功!
27 10
【C语言程序设计——选择结构程序设计】按从小到大排序三个数(头歌实践教学平台习题)【合集】
本任务要求从键盘输入三个数,并按从小到大的顺序排序后输出。主要内容包括: - **任务描述**:实现三个数的排序并输出。 - **编程要求**:根据提示在编辑器中补充代码。 - **相关知识**: - 选择结构(if、if-else、switch) - 主要语句类型(条件语句) - 比较操作与交换操作 - **测试说明**:提供两组测试数据及预期输出。 - **通关代码**:完整代码示例。 - **测试结果**:展示测试通过的结果。 通过本任务,你将掌握基本的选择结构和排序算法的应用。祝你成功!
27 4
数据结构实验之C 语言的函数数组指针结构体知识
本实验旨在复习C语言中的函数、数组、指针、结构体与共用体等核心概念,并通过具体编程任务加深理解。任务包括输出100以内所有素数、逆序排列一维数组、查找二维数组中的鞍点、利用指针输出二维数组元素,以及使用结构体和共用体处理教师与学生信息。每个任务不仅强化了基本语法的应用,还涉及到了算法逻辑的设计与优化。实验结果显示,学生能够有效掌握并运用这些知识完成指定任务。
68 4
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
124 16
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
169 7
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
139 8
|
2月前
|
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
168 8
|
2月前
|
【数据结构】双向带头循环链表(c语言)(附源码)
本文介绍了双向带头循环链表的概念和实现。双向带头循环链表具有三个关键点:双向、带头和循环。与单链表相比,它的头插、尾插、头删、尾删等操作的时间复杂度均为O(1),提高了运行效率。文章详细讲解了链表的结构定义、方法声明和实现,包括创建新节点、初始化、打印、判断是否为空、插入和删除节点等操作。最后提供了完整的代码示例。
93 0
|
2月前
|
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
43 1

热门文章

最新文章