探索未来的视觉革命:卷积神经网络的崭新时代(二)

简介: 探索未来的视觉革命:卷积神经网络的崭新时代(二)

本节在学完刘二大人的卷积神经网络进阶篇,令我感受颇深,下面我先说一下知识点,文章的结尾我再表达一下我的个人看法以及刘二大人对我们的建议。

🍋引言

本节介绍一下GoogleNet,首先说一下它的背景历史,GoogleNet是由Google研究员Christian Szegedy等人于2014年提出的深度卷积神经网络架构。它在当时的ImageNet图像分类挑战赛中取得了惊人的成绩,将错误率大幅度降低,标志着深度学习领域的一次巨大突破。

🍋GoogleNet的架构

GoogleNet之所以引人注目,是因为它采用了一种全新的架构,即Inception架构。这个架构采用了多尺度卷积核,允许网络同时学习不同尺度的特征。这里解释一下就是类似于多条路一起跑,看看哪个好Inception模块将不同大小的卷积核组合在一起,从而有效捕获图像中的各种特征,无论是边缘、纹理还是高级抽象的特征。

GoogleNet的架构包括多个Inception模块,这些模块由卷积层、池化层、全连接层和辅助分类器组成。此外,GoogleNet采用了1x1卷积核来减少模型的参数数量,从而减小了计算复杂度。上图的图例可以看到一些简单的标识,以及在网络中的分布

刘二二人这里提到了一点,观察网络的共同点,发现有一部分出现的频率很大,如下图红框中所示

🍋1×1 convolution

这解释1×1的卷积前,我们先来看看Inception模型图示,不难发现,每条路都有一个共同的点那就是都经过了1×1的卷积。

那么1×1的卷积究竟有什么魔力呢?我们先从下方的图示了解一下运算

其实就是每个相乘再相加,接下来我们通过一组数据进行对比一下,1×1卷积的作用

同样都是从192 Channel到32 Channel,前者使用了一个5×5的卷积,后者在5×5的卷积前加了一个1×1的卷积,运算值居然是原来的十分之一,那么从这里我们就清楚了它的主要功能。

  • 通道降维(channel dimension reduction):通过应用 1×1 卷积,可以减小特征图的通道数量,从而降低模型的计算负担。这对于减小模型的参数数量和计算复杂度很有帮助。通道降维有时也称为特征压缩。
  • 通道混合(channel mixing):1×1 卷积可以将不同通道之间的信息进行混合。它通过学习权重来组合输入通道的信息,以产生更丰富的特征表示。这有助于模型更好地捕获特征之间的关联。
  • 非线性变换:虽然 1×1 卷积核的大小为 1x1,但通常会包括非线性激活函数,如ReLU(Rectified Linear Unit)。这使得 1×1 卷积可以执行非线性变换,有助于模型更好地捕获复杂的模式。

如果使用代码进行每条路的编写可以参考下图

最后一个老师说空间不足,这里需要补充一句

branch3×3 = self.branch3×3_3(branch3×3)

之后需要将它们使用cat拼接起来

outputs = [branch1x1, branch5x5, branch3x3, branch_pool] 
return torch.cat(outputs, dim=1)

这里说明一下拼接的作用,Inception模块中的拼接操作的主要作用是将不同尺度和类型的特征融合在一起,以丰富特征表示并提高网络性能。这是GoogleNet取得成功的一个关键因素,使其在图像分类等任务中表现出色。


完整的代码如下:

class InceptionA(nn.Module):
  def __init__(self, in_channels):
    super(InceptionA, self).__init__()
    self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
    self.branch5x5_1 = nn.Conv2d(in_channels,16, kernel_size=1) 
    self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
    self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1) 
    self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1) 
    self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
    self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
  def forward(self, x):
    branch1x1 = self.branch1x1(x)
    branch5x5 = self.branch5x5_1(x)
    branch5x5 = self.branch5x5_2(branch5x5)
    branch3x3 = self.branch3x3_1(x)
    branch3x3 = self.branch3x3_2(branch3x3) 
    branch3x3 = self.branch3x3_3(branch3x3)
    branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) 
    branch_pool = self.branch_pool(branch_pool)
    outputs = [branch1x1, branch5x5, branch3x3, branch_pool] 
    return torch.cat(outputs, dim=1)

之后我们需要定义网络层

class Net(nn.Module):
  def __init__(self):
    super(Net, self).__init__()
    self.conv1 = nn.Conv2d(1, 10, kernel_size=5) 
    self.conv2 = nn.Conv2d(88, 20, kernel_size=5)
    self.incep1 = InceptionA(in_channels=10) 
    self.incep2 = InceptionA(in_channels=20)
    self.mp = nn.MaxPool2d(2)
    self.fc = nn.Linear(1408, 10)
  def forward(self, x):
    in_size = x.size(0)
    x = F.relu(self.mp(self.conv1(x))) 
    x = self.incep1(x)
    x = F.relu(self.mp(self.conv2(x))) 
    x = self.incep2(x)
    x = x.view(in_size, -1)
    x = self.fc(x)
    return x

🍋如何有效避免梯度消失?

这里我们引入Residual net

完整的结构与代码如下

🍋总结

GoogleNet是深度学习领域的一项重要成就,它的Inception架构为图像分类和计算机视觉任务提供了高效的解决方案。在Python中,我们可以轻松使用深度学习框架来构建和应用GoogleNet模型。同时文本还介绍了一种避免梯度消失的方法。


视频结尾老师讲述了一些学习方法,主要有四点如下

  • 理论《深度学习》
  • 阅读pytorch文档(通读一遍)
  • 复现经典论文(代码下载,读代码,写代码)
  • 扩充视野

本文根据b站刘二大人《PyTorch深度学习实践》完结合集学习后加以整理,文中图文均不属于个人。

挑战与创造都是很痛苦的,但是很充实。

相关文章
|
14天前
|
机器学习/深度学习 人工智能 算法
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物('蛤蜊', '珊瑚', '螃蟹', '海豚', '鳗鱼', '水母', '龙虾', '海蛞蝓', '章鱼', '水獭', '企鹅', '河豚', '魔鬼鱼', '海胆', '海马', '海豹', '鲨鱼', '虾', '鱿鱼', '海星', '海龟', '鲸鱼')数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。
106 7
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
|
7天前
|
机器学习/深度学习 人工智能 算法
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
乐器识别系统。使用Python为主要编程语言,基于人工智能框架库TensorFlow搭建ResNet50卷积神经网络算法,通过对30种乐器('迪吉里杜管', '铃鼓', '木琴', '手风琴', '阿尔卑斯号角', '风笛', '班卓琴', '邦戈鼓', '卡萨巴', '响板', '单簧管', '古钢琴', '手风琴(六角形)', '鼓', '扬琴', '长笛', '刮瓜', '吉他', '口琴', '竖琴', '沙槌', '陶笛', '钢琴', '萨克斯管', '锡塔尔琴', '钢鼓', '长号', '小号', '大号', '小提琴')的图像数据集进行训练,得到一个训练精度较高的模型,并将其
19 0
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
|
14天前
|
机器学习/深度学习 人工智能 算法
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集('蜜蜂', '甲虫', '蝴蝶', '蝉', '蜻蜓', '蚱蜢', '蛾', '蝎子', '蜗牛', '蜘蛛')进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一张昆虫图片识别其名称。
152 7
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
|
15天前
|
机器学习/深度学习 人工智能 算法
【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow
球类识别系统,本系统使用Python作为主要编程语言,基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集 '美式足球', '棒球', '篮球', '台球', '保龄球', '板球', '足球', '高尔夫球', '曲棍球', '冰球', '橄榄球', '羽毛球', '乒乓球', '网球', '排球'等15种常见的球类图像作为数据集,然后进行训练,最终得到一个识别精度较高的模型文件。再使用Django开发Web网页端可视化界面平台,实现用户上传一张球类图片识别其名称。
111 7
【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow
|
8天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLOv8改进-卷积Conv】DualConv( Dual Convolutional):用于轻量级深度神经网络的双卷积核
**摘要:** 我们提出DualConv,一种融合$3\times3$和$1\times1$卷积的轻量级DNN技术,适用于资源有限的系统。它通过组卷积结合两种卷积核,减少计算和参数量,同时增强准确性。在MobileNetV2上,参数减少54%,CIFAR-100精度仅降0.68%。在YOLOv3中,DualConv提升检测速度并增4.4%的PASCAL VOC准确性。论文及代码已开源。
|
6天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【YOLOv8改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
YOLO目标检测专栏介绍了SimAM,一种无参数的CNN注意力模块,基于神经科学理论优化能量函数,提升模型表现。SimAM通过计算3D注意力权重增强特征表示,无需额外参数。文章提供论文链接、Pytorch实现代码及详细配置,展示了如何在目标检测任务中应用该模块。
|
15天前
|
机器学习/深度学习 PyTorch 算法框架/工具
认识卷积神经网络
卷积神经网络(CNN)是深度学习中用于图像处理的关键模型,它通过卷积层自动学习图像特征,池化层降低计算复杂度并保持重要特征,全连接层则用于分类或回归任务。卷积层使用可学习的滤波器扫描图像,检测特征;池化层通常采用最大池化或平均池化减少数据维度;全连接层连接所有特征以得出最终预测。CNN设计灵感来源于生物视觉系统,有效处理图像的网格结构数据,尤其适合图像识别和分类任务。
|
15天前
|
安全 Java 网络安全
【认知革命】JAVA网络编程新视角:重新定义URL与URLConnection,让网络资源触手可及!
【6月更文挑战第22天】JAVA网络编程中,URL代表统一资源定位符,用于表示网络资源地址。通过`new URL("address")`创建URL对象,可解析和访问其组件。URLConnection是与URL建立连接的接口,用于定制HTTP请求,如设置GET/POST、超时及交换数据。
|
19天前
|
机器学习/深度学习 网络架构 计算机视觉
VGG深度卷积神经网络架构
VGG深度卷积神经网络架构
|
17天前
|
机器学习/深度学习 算法 计算机视觉
没有公式,不要代码,让你理解 RCNN:目标检测中的区域卷积神经网络
没有公式,不要代码,让你理解 RCNN:目标检测中的区域卷积神经网络
43 0
没有公式,不要代码,让你理解 RCNN:目标检测中的区域卷积神经网络