使用PyTorch解决多分类问题:构建、训练和评估深度学习模型

简介: 使用PyTorch解决多分类问题:构建、训练和评估深度学习模型

🍋引言

当处理多分类问题时,PyTorch是一种非常有用的深度学习框架。在这篇博客中,我们将讨论如何使用PyTorch来解决多分类问题。我们将介绍多分类问题的基本概念,构建一个简单的多分类神经网络模型,并演示如何准备数据、训练模型和评估结果。

🍋什么是多分类问题?

多分类问题是一种机器学习任务,其中目标是将输入数据分为多个不同的类别或标签。与二分类问题不同,多分类问题涉及到三个或更多类别的分类任务。例如,图像分类问题可以将图像分为不同的类别,如猫、狗、鸟等。

🍋处理步骤

  • 准备数据
    收集和准备数据集,确保每个样本都有相应的标签,以指明其所属类别。
    划分数据集为训练集、验证集和测试集,以便进行模型训练、调优和性能评估。
  • 数据预处理
    对数据进行预处理,例如归一化、标准化、缺失值处理或数据增强,以确保模型训练的稳定性和性能。
  • 选择模型架构
    选择适当的深度学习模型架构,通常包括卷积神经网络(CNN)、循环神经网络(RNN)、Transformer等,具体取决于问题的性质。
  • 定义损失函数
    为多分类问题选择适当的损失函数,通常是交叉熵损失(Cross-Entropy Loss)。
  • 选择优化器
    选择合适的优化算法,如随机梯度下降(SGD)、Adam、RMSprop等,以训练模型并调整权重。
  • 训练模型
    使用训练数据集来训练模型。在每个训练迭代中,通过前向传播和反向传播来更新模型参数,以减小损失函数的值。
  • 评估模型
    使用验证集来评估模型性能。常见的性能指标包括准确性、精确度、召回率、F1分数等。
  • 调优模型
    根据验证集的性能,对模型进行调优,可以尝试不同的超参数设置、模型架构变化或数据增强策略。
  • 测试模型
    最终,在独立的测试数据集上评估模型的性能,以获得最终性能评估。
  • 部署模型
    将训练好的模型部署到实际应用中,用于实时或批处理多分类任务。

🍋多分类问题

之前我们讨论的问题都是二分类居多,对于二分类问题,我们若求得p(0),南无p(1)=1-p(0),还是比较容易的,但是本节我们将引入多分类,那么我们所求得就转化为p(i)(i=1,2,3,4…),同时我们需要满足以上概率中每一个都大于0;且总和为1

处理多分类问题,这里我们新引入了一个称为Softmax Layer

接下来我们一起讨论一下Softmax Layer层

首先我们计算指数计算e的zi次幂,原因很简单e的指数函数恒大于0;分母就是e的z1次幂+e的z2次幂+e的z3次幂…求和,这样所有的概率和就为1了。


下图形象的展示了Softmax,Exponent这里指指数,和上面我们说的一样,先求指数,这样有了分子,再将所有指数求和,最后一一divide,得到了每一个概率。


接下来我们一起来看看损失函数

如果使用numpy进行实现,根据刘二大人的代码,可以进行如下的实现

import numpy as np
y = np.array([1,0,0])
z = np.array([0.2,0.1,-0.1])
y_pred = np.exp(z)/np.exp(z).sum()
loss = (-y * np.log(y_pred)).sum()
print(loss)

运行结果如下

注意:神经网络的最后一层不需要激活


pytorch

import torch
y = torch.LongTensor([0])  # 长整型
z = torch.Tensor([[0.2, 0.1, -0.1]])
criterion = torch.nn.CrossEntropyLoss() 
loss = criterion(z, y)
print(loss)

运行结果如下

下面根据一个例子进行演示

criterion = torch.nn.CrossEntropyLoss()
Y = torch.LongTensor([2,0,1])
Y_pred1 = torch.Tensor([[0.1, 0.2, 0.9], 
                        [1.1, 0.1, 0.2], 
                        [0.2, 2.1, 0.1]]) 
Y_pred2 = torch.Tensor([[0.8, 0.2, 0.3], 
                        [0.2, 0.3, 0.5], 
                        [0.2, 0.2, 0.5]])
l1 = criterion(Y_pred1, Y)
l2 = criterion(Y_pred2, Y)
print("Batch Loss1 = ", l1.data, "\nBatch Loss2=", l2.data)

运行结果如下

根据上面的代码可以看出第一个损失比第二个损失要小。原因很简单,想对于Y_pred1每一个预测的分类与Y是一致的,而Y_pred2则相差了一下,所以损失自然就大了些

🍋MNIST dataset的实现

首先第一步还是导包

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader 
import torch.nn.functional as F 
import torch.optim as optim

之后是数据的准备

batch_size = 64
# transform可以将其转化为0-1,形状的转换从28×28转换为,1×28×28
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081, ))   # 均值mean和标准差std
])
train_dataset = datasets.MNIST(root='../dataset/mnist/', 
                train=True,
                download=True,
                transform=transform)  
train_loader = DataLoader(train_dataset,
              shuffle=True,
              batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', 
              train=False,
              download=True,
              transform=transform)
test_loader = DataLoader(test_dataset,
            shuffle=False,
            batch_size=batch_size)

接下来我们构建网络

class Net(torch.nn.Module):
  def __init__(self):
    super(Net, self).__init__()
    self.l1 = torch.nn.Linear(784, 512) 
    self.l2 = torch.nn.Linear(512, 256) 
    self.l3 = torch.nn.Linear(256, 128) 
    self.l4 = torch.nn.Linear(128, 64) 
    self.l5 = torch.nn.Linear(64, 10)
  def forward(self, x):
    x = x.view(-1, 784)
    x = F.relu(self.l1(x)) 
    x = F.relu(self.l2(x)) 
    x = F.relu(self.l3(x)) 
    x = F.relu(self.l4(x)) 
    return self.l5(x)  # 注意最后一层不做激活
model = Net()

之后定义损失和优化器

criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

接下来就进行训练了

def train(epoch):
  running_loss = 0.0
  for batch_idx, data in enumerate(train_loader, 0): 
    inputs, target = data
    optimizer.zero_grad()
    # forward + backward + update
    outputs = model(inputs)
    loss = criterion(outputs, target)
    loss.backward()
    optimizer.step()
    running_loss += loss.item()
  if batch_idx % 300 == 299:
    print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300)) 
    running_loss = 0.0
def test():
  correct = 0
  total = 0
  with torch.no_grad(): # 这里可以防止内嵌代码不会执行梯度
    for data in test_loader:
      images, labels = data
      outputs = model(images)
      _, predicted = torch.max(outputs.data, dim=1)
      total += labels.size(0)
      correct += (predicted == labels).sum().item()
  print('Accuracy on test set: %d %%' % (100 * correct / total))

最后调用执行

if __name__ == '__main__': 
  for epoch in range(10): 
    train(epoch)
    test()

🍋NLLLoss 和 CrossEntropyLoss

NLLLoss 和 CrossEntropyLoss(也称为交叉熵损失)是深度学习中常用的两种损失函数,用于测量模型的输出与真实标签之间的差距,通常用于分类任务。它们有一些相似之处,但也有一些不同之处。

相同点:

用途:两者都用于分类任务,评估模型的输出和真实标签之间的差异,以便进行模型的训练和优化。
数学基础:NLLLoss 和 CrossEntropyLoss 本质上都是交叉熵损失的不同变种,它们都以信息论的概念为基础,衡量两个概率分布之间的相似度。
输入格式:它们通常期望模型的输出是一个概率分布,表示各个类别的预测概率,以及真实的标签。

不同点:

输入格式:NLLLoss 通常期望输入是对数概率(log probabilities),而 CrossEntropyLoss 通常期望输入是未经对数化的概率。在实际应用中,CrossEntropyLoss 通常与softmax操作结合使用,将原始模型输出转化为概率分布,而NLLLoss可以直接使用对数概率。
对数化:NLLLoss 要求将模型输出的概率经过对数化(取对数)以获得对数概率,然后与真实标签的离散概率分布进行比较。CrossEntropyLoss 通常在 softmax 操作之后直接使用未对数化的概率值与真实标签比较。
输出维度:NLLLoss 更通用,可以用于多种情况,包括多类别分类和序列生成等任务,因此需要更多的灵活性。CrossEntropyLoss 通常用于多类别分类任务。

总之,NLLLoss 和 CrossEntropyLoss 都用于分类任务,但它们在输入格式和使用上存在一些差异。通常,选择哪个损失函数取决于你的模型输出的格式以及任务的性质。如果你的模型输出已经是对数概率形式,通常使用NLLLoss,否则通常使用CrossEntropyLoss

挑战与创造都是很痛苦的,但是很充实。

相关文章
|
2天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
92 59
|
3天前
|
机器学习/深度学习 数据采集 数据库
使用Python实现智能食品营养分析的深度学习模型
使用Python实现智能食品营养分析的深度学习模型
22 6
|
4天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品安全监测的深度学习模型
使用Python实现智能食品安全监测的深度学习模型
17 0
|
4天前
|
机器学习/深度学习 存储 自然语言处理
使用深度学习模型进行情感分析!!!
本文介绍了如何使用深度学习模型进行中文情感分析。首先导入了必要的库,包括`transformers`、`pandas`、`jieba`和`re`。然后定义了一个`SentimentAnalysis`类,用于处理数据、加载真实标签和评估模型准确性。在主函数中,使用预训练的情感分析模型对处理后的数据进行预测,并计算模型的准确性。
11 0
|
10天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
59 9
|
7天前
|
机器学习/深度学习 人工智能 监控
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。随着卷积神经网络(CNN)的发展,图像识别的准确性和效率得到了显著提升。然而,数据不平衡、模型泛化能力、计算资源消耗等问题仍然是制约深度学习在图像识别领域进一步发展的关键因素。本文将详细介绍深度学习在图像识别中的应用案例,并讨论解决现有挑战的可能策略。
|
4天前
|
机器学习/深度学习 传感器 监控
深度学习在图像识别中的突破与应用
随着人工智能的飞速发展,深度学习已经成为推动图像识别技术进步的核心动力。本文旨在探讨深度学习在图像识别领域的最新突破及其广泛应用,通过分析卷积神经网络(CNN)等关键技术的发展,揭示深度学习如何革新传统图像处理方式,提升识别精度和效率。文章还将概述当前面临的挑战与未来发展趋势,为读者提供一个全面而深入的技术视角。
|
9天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的应用与挑战
本文探讨了深度学习在图像识别领域的应用现状,分析了其面临的主要技术挑战和解决方案。通过对比传统方法和深度学习模型的优势,揭示了深度学习如何推动图像识别技术的发展,并展望了未来的研究方向。
|
6天前
|
机器学习/深度学习 分布式计算 自动驾驶
深度学习在图像识别中的革命性应用####
【10月更文挑战第29天】 本文深入探讨了深度学习技术如何彻底革新图像识别领域,通过卷积神经网络(CNN)的架构优化、数据集增强策略及迁移学习的应用,显著提升了图像分类与目标检测的准确率。文章概述了深度学习模型训练的关键挑战,如过拟合、计算资源依赖性,并提出了创新性解决方案,包括正则化技术、分布式计算框架及自适应学习率调整策略。强调了深度学习在自动驾驶、医疗影像分析等领域的广阔应用前景,同时指出了隐私保护、模型可解释性等伦理法律问题的重要性,为未来研究提供了方向。 ####
25 5
|
4天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习在图像识别领域的应用,包括基本原理、常用模型和实际案例。我们将探讨如何利用深度学习技术提高图像识别的准确性和效率,并展示一些代码示例。通过阅读本文,您将了解到深度学习在图像识别中的强大潜力和应用价值。
下一篇
无影云桌面