容器化运维镜像仓库和资源调度

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 【2月更文挑战第14天】容器运维平台的两个关键组成,镜像仓库和资源调度。

业务容器化后,运维面对的不再是一台台实实在在的物理机或者虚拟机了,而是一个个 Docker 容器,它们可能都没有固定的 IP,这个时候要想服务发布该怎么做呢?


这时候就需要一个面向容器的新型运维平台,它能够在现有的物理机或者虚拟机上创建容器,并且能够像运维物理机或者虚拟机一样,对容器的生命周期进行管理,通常我们叫它“容器运维平台”。


一个容器运维平台通常包含以下几个组成部分:镜像仓库、资源调度、容器调度和服务编排。

镜像仓库

Docker 容器运行依托的是 Docker 镜像,也就是说要发布服务,首先必须把镜像发布到各个机器上去,这个时候问题就来了,这个镜像该放在哪?如何把镜像发布到各个机器上去?这时候你就要依靠镜像仓库了。


镜像仓库的概念其实跟 Git 代码仓库类似,就是有一个集中存储的地方,把镜像存储在这里,在服务发布的时候,各个服务器都访问这个集中存储来拉取镜像,然后启动容器。


对于大部分业务团队来说,出于安全和访问速度的需要,都会搭建一套私有的镜像仓库。那么具体该如何搭建一套私有的镜像仓库呢?

1)权限控制

镜像仓库首先面临的第一个问题就是权限控制的问题,也就是说哪些用户可以拉取镜像,哪些用户可以修改镜像。


一般来说,镜像仓库都设有两层权限控制:一是必须登录才可以访问,这是最外层的控制,它规定了哪些人可以访问镜像仓库;二是对镜像按照项目的方式进行划分,每个项目拥有自己的镜像仓库目录,并且给每个项目设置项目管理员、开发者以及客人这三个角色,只有项目管理员和开发者拥有自己镜像仓库目录下镜像的修改权限,而客人只拥有访问权限,项目管理员可以给这个项目设置哪些人是开发者。


这个权限控制就跟大厦办公楼的管理类似,你要进入大厦里的一个办公室,首先必须具备进入大厦的权限,这个权限是在大厦里所有办公的人都有的。然后你还得具备大厦里你办公室所在楼层的门禁,这样才能进入办公室。不同楼层的人权限不同,只能进入自己楼层的办公室。如果某个办公室有新来的员工,首先要给他分配大厦的进入权限,然后还要这个办公室的管理员给他分配办公室的权限。


2)镜像同步

在实际的生产环境中,往往需要把镜像同时发布到几十台或者上百台集群节点上,单个镜像仓库实例往往受带宽原因限制无法同时满足大量节点的下载需求,这个时候就需要配置多个镜像仓库实例来做负载均衡,同时也就产生镜像在多个镜像仓库实例之间同步的问题了。


一般来说,有两种方案,一种是一主多从,主从复制的方案,比如开源镜像仓库Harbor采用了这种方案;另一种是 P2P 的方案,比如阿里的容器镜像分发系统蜻蜓采用了 P2P 方案。


Harbor 所采取的主从复制的方案是,把镜像传到一个主镜像仓库实例上去,然后其他从镜像仓库实例都从主镜像仓库实例同步,它的实现就像下图所描述的一样。

image.png

除此之外,Harbor 还支持层次型的发布方式,如果集群部署在多个 IDC,可以先从一个主 IDC 的镜像仓库同步到其他从 IDC 的镜像仓库,再从各个从 IDC 同步给下面的分 IDC,它的实现就像下图所描述的一样。

image.png

3)高可用性

既然 Docker 镜像是 Docker 容器运行的基础,那么镜像仓库的高可用性就不言而喻了。一般而言,高可用性设计无非就是把服务部署在多个 IDC,这样的话即使有 IDC 出问题,也可以把服务迁移到别的正常 IDC 中去。同样对于镜像仓库的搭建,也可以采用多 IDC 部署,那么需要做到的就是不同 IDC 之间的镜像同步。


比如镜像仓库会部署在永丰、土城两个内网 IDC 内,两个 IDC 内的镜像同步采用 Harbor 的双主复制策略,互相复制镜像,这样的话即使有一个 IDC 出现问题,另外一个 IDC 仍然能够提供服务,而且不丢失数据。

image.png

资源调度

Docker 镜像要分发到哪些机器上去?这些机器是从哪里来的?这其实涉及的是资源调度的问题。


服务部署的集群主要包括三种:


1、物理机集群。大部分中小团队应该都拥有自己的物理机集群,并且大多按照集群  -  服务池  -  服务器这种模式进行运维。物理机集群面临的问题,主要是服务器的配置不统一,尤其对于计算节点来说,普遍存在的一种情况就是几年前采购的机器的配置可能还是 12 核 16G 内存的配置,而近些年采购的机器都至少是 32 核 32G 内存的配置,对于这两种机器往往要区别对待,比如旧的机器用于跑一些非核心占用资源量不大的业务,而新采购的机器用于跑一些核心且服务调用量高的业务。


2、虚拟机集群。不少业务团队在使用物理机集群之后,发现物理机集群存在使用率不高、业务迁移不灵活的问题,因此纷纷转向了虚拟化方向,构建自己的私有云,比如以 OpenStack 技术为主的私有云集群在国内外不少业务团队都有大规模的应用。它的最大好处就是可以整合企业内部的服务器资源,通过虚拟化技术进行按需分配,提高集群的资源使用率,节省成本。


3、公有云集群。现在越来越多的业务团队,尤其是初创公司,因为公有云快速灵活的特性,纷纷在公有云上搭建自己的业务。公有云最大的好处除了快速灵活、分钟级即可实现上百台机器的创建,还有个好处就是配置统一、便于管理,不存在机器配置碎片化问题。

通过 Docker Machine 可以在企业内部的物理机集群,或者虚拟机集群比如 OpenStack 集群,又或者公有云集群比如 AWS 集群等上创建机器并且直接部署容器。Docker Machine 的功能虽然很好,但是对于大部分已经发展了一段时间的业务团队来说,并不能直接拿来使用。


这主要是因为资源调度最大的难点不在于机器的创建和容器的部署,而在于如何对接各个不同的集群,统一管理来自不同集群的机器权限管理、成本核算以及环境初始化等操作,这个时候就需要有一个统一的层来完成这个操作。这个对有历史包袱的团队,比如公司内网的物理机集群已经有一套运维体系来说,挑战不小,需要针对新的模式重新开发这套运维平台。

相关实践学习
通过容器镜像仓库与容器服务快速部署spring-hello应用
本教程主要讲述如何将本地Java代码程序上传并在云端以容器化的构建、传输和运行。
Kubernetes极速入门
Kubernetes(K8S)是Google在2014年发布的一个开源项目,用于自动化容器化应用程序的部署、扩展和管理。Kubernetes通常结合docker容器工作,并且整合多个运行着docker容器的主机集群。 本课程从Kubernetes的简介、功能、架构,集群的概念、工具及部署等各个方面进行了详细的讲解及展示,通过对本课程的学习,可以对Kubernetes有一个较为全面的认识,并初步掌握Kubernetes相关的安装部署及使用技巧。本课程由黑马程序员提供。   相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
1月前
|
运维 Linux Apache
Puppet 作为一款强大的自动化运维工具,被广泛应用于配置管理领域。通过定义资源的状态和关系,Puppet 能够确保系统始终处于期望的配置状态。
Puppet 作为一款强大的自动化运维工具,被广泛应用于配置管理领域。通过定义资源的状态和关系,Puppet 能够确保系统始终处于期望的配置状态。
54 3
|
1月前
|
运维 Kubernetes 监控
提升运维效率:容器化技术在现代IT基础设施中的应用
本文将探讨容器化技术如何优化企业的IT基础设施,提高部署效率和资源利用率。我们将深入分析容器技术的优势、实现步骤以及在实际运维中的应用场景。通过实例展示,帮助读者更好地理解并应用这一前沿技术,助力企业实现高效运维。
|
3月前
|
运维 监控 Cloud Native
自动化运维的魔法书云原生之旅:从容器化到微服务架构的演变
【8月更文挑战第29天】本文将带你领略自动化运维的魅力,从脚本编写到工具应用,我们将一起探索如何通过技术提升效率和稳定性。你将学会如何让服务器自主完成更新、监控和故障修复,仿佛拥有了一本能够自动翻页的魔法书。
|
20天前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
57 1
|
1月前
|
缓存 运维 Docker
容器化运维:Docker Desktop 占用磁盘空间过大?教你轻松解决!
Windows Docker Desktop 使用过程中,因镜像、容器数据及构建缓存的累积,可能导致磁盘空间占用过高。通过删除无用镜像与容器、压缩磁盘以及清理构建缓存等方法,可有效释放空间。具体步骤包括关闭WSL、使用`diskpart`工具压缩虚拟磁盘、执行`docker buildx prune -f`清理缓存等。这些操作能显著减少磁盘占用,提升系统性能。
339 4
|
1月前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
58 3
|
29天前
|
运维 资源调度 调度
容器微服务运维
【10月更文挑战第16天】业务容器化后,运维需采用面向容器的新型平台,主要由镜像仓库、资源调度、容器调度、调度策略和服务编排组成。镜像仓库负责存储与分发容器镜像,支持权限控制、镜像同步和高可用性设计;资源调度解决不同环境下的机器部署问题;容器调度实现容器在主机上的合理分配;调度策略优化容器主机选择;服务编排则处理服务间的依赖关系和服务发现,支持自动扩缩容以适应业务需求变化。
|
2月前
|
存储 弹性计算 运维
自动化监控和响应ECS系统事件
阿里云提供的ECS系统事件用于记录云资源信息,如实例启停、到期通知等。为实现自动化运维,如故障处理与动态调度,可使用云助手插件`ecs-tool-event`。该插件定时获取并转化ECS事件为日志存储,便于监控与响应,无需额外开发,适用于大规模集群管理。详情及示例可见链接文档。
|
1月前
|
运维 Prometheus 监控
提升运维效率:容器化技术与自动化工具的结合
在当今信息技术飞速发展的时代,运维工作面临着前所未有的挑战。为了应对这些挑战,本文将探讨如何通过结合容器化技术和自动化工具来提升运维效率。我们将介绍容器化技术的基本概念和优势,然后分析自动化工具在运维中的应用,并给出一些实用的示例。通过阅读本文,您将了解到如何利用这些先进技术来优化您的运维工作流程,提高生产力。
|
2月前
|
运维 Cloud Native Devops
云原生架构的崛起与实践云原生架构是一种通过容器化、微服务和DevOps等技术手段,帮助应用系统实现敏捷部署、弹性扩展和高效运维的技术理念。本文将探讨云原生的概念、核心技术以及其在企业中的应用实践,揭示云原生如何成为现代软件开发和运营的主流方式。##
云原生架构是现代IT领域的一场革命,它依托于容器化、微服务和DevOps等核心技术,旨在解决传统架构在应对复杂业务需求时的不足。通过采用云原生方法,企业可以实现敏捷部署、弹性扩展和高效运维,从而大幅提升开发效率和系统可靠性。本文详细阐述了云原生的核心概念、主要技术和实际应用案例,并探讨了企业在实施云原生过程中的挑战与解决方案。无论是正在转型的传统企业,还是寻求创新的互联网企业,云原生都提供了一条实现高效能、高灵活性和高可靠性的技术路径。 ##
205 3
下一篇
无影云桌面