嵌入式开发常见的3个C语言技巧

简介: 嵌入式开发常见的3个C语言技巧

1.操作寄存器

   在嵌入式开发中,常常要操作寄存器,对寄存器进行写入,读出等等操作。每个寄存器都有自己固有的地址,通过C语言访问这些地址就变得尤为重要。

#define GSTATUS1        (*(volatile unsigned int *)0x560000B0)

在这里,我们举一个例子。这是一个状态寄存器的宏定义。首先,通过unsigned int我们能够知道,该寄存器是32位的。因为要避免程序执行过程中直接从cache中读取数据,所以用volatile进行修饰。每次都要重新读取该地址上的值。首先(volatile unsigned int * )是一个指针,我们就假设它为p吧。

它存储的地址就是后面的0x560000B0,然后取这个地址的值,也就是 * p,所以源代码变成了(* (volatile unsigned int * )0x560000B0),接下来我们就能直接赋值给GSTATUS1来改变地址0x560000B0上存储的值了。

/* NAND FLASH (see S3C2410 manual chapter 6) */
typedef struct {
    S3C24X0_REG32   NFCONF;
    S3C24X0_REG32   NFCMD;
    S3C24X0_REG32   NFADDR;
    S3C24X0_REG32   NFDATA;
    S3C24X0_REG32   NFSTAT;
    S3C24X0_REG32   NFECC;
} S3C2410_NAND;
static S3C2410_NAND * s3c2410nand = (S3C2410_NAND *)0x4e000000;
volatile unsigned char *p = (volatile unsigned char *)&s3c2410nand->NFSTAT;

有时候,你会看到这样一种情况的赋值。其实这和我们刚刚讲过的差不多。只不过这里是在定义了指针的同时对指针进行赋值。

这里首先定义了结构体S3C2410_NAND,里面全部是32位的变量。又定义了这种结构体类型的指针,且指向0x4e000000这个地址,也就是此刻s3c2410nand指向了一个实际存在的物理地址。

s3c2410nand指针访问了NFSTAT变量,但我们要的是它的地址,而不是它地址上的值。所以用&取NFSTAT地址,这样再强制转换为unsigned char型的指针,赋给p,就可以直接通过p来给NFSTAT赋值了。

推荐文章:

STM32中较为常见的C语言基础知识

2.操作函数指针

指针不光能指向变量、字符串、数组,还能够指向函数。在C语言中允许将函数的入口地址赋值给指针。这样就可以通过指针来访问函数。

还可以把函数指针当成参数来传递。函数指针可以简化代码,减少修改代码时的工作量。通过接下来的讲解大家会体会到这一点的。

#include <iostream>
using namespace std;
/*比较函数声明*/
int max(int,int);
int (*test)(int,int);
int main(int argc,char* argv[])
{
  int largernumber;
/*将max函数的入口地址赋值给
 *函数指针test
 */
  test=max;
/*通过指针test调用函数max实
 *现比较大小
 */
  largernumber=(*test)(1,2);
  cout<<largernumber<<endl;
  return 0;      
}
int max(int a,int b)
{
   return (a>b?a:b);  
}

通过注释大家应该很容易理解,函数指针其实和变量指针、字符串指针差不多的。如果大家理解了这个小程序,那么理解起下面这个有关Nand flash的源代码就好多了。

typedef struct {
    void (*nand_reset)(void);
    void (*wait_idle)(void);
    void (*nand_select_chip)(void);
    void (*nand_deselect_chip)(void);
    void (*write_cmd)(int cmd);
    void (*write_addr)(unsigned int addr);
    unsigned char (*read_data)(void);
}t_nand_chip;
static t_nand_chip nand_chip;
/* NAND Flash操作的总入口, 它们将调用S3C2410或S3C2440的相应函数 */
static void nand_reset(void);
static void wait_idle(void);
static void nand_select_chip(void);
static void nand_deselect_chip(void);
static void write_cmd(int cmd);
static void write_addr(unsigned int addr);
static unsigned char read_data(void);
/* S3C2410的NAND Flash处理函数 */
static void s3c2410_nand_reset(void);
static void s3c2410_wait_idle(void);
static void s3c2410_nand_select_chip(void);
static void s3c2410_nand_deselect_chip(void);
static void s3c2410_write_cmd(int cmd);
static void s3c2410_write_addr(unsigned int addr);
static unsigned char s3c2410_read_data();
/* S3C2440的NAND Flash处理函数 */
static void s3c2440_nand_reset(void);
static void s3c2440_wait_idle(void);
static void s3c2440_nand_select_chip(void);
static void s3c2440_nand_deselect_chip(void);
static void s3c2440_write_cmd(int cmd);
static void s3c2440_write_addr(unsigned int addr);
static unsigned char s3c2440_read_data(void);
/* 初始化NAND Flash */
void nand_init(void)
{
#define TACLS   0
#define TWRPH0  3
#define TWRPH1  0
    /* 判断是S3C2410还是S3C2440 */
    if ((GSTATUS1 == 0x32410000) || (GSTATUS1 == 0x32410002))
    {
        nand_chip.nand_reset         = s3c2410_nand_reset;
        nand_chip.wait_idle          = s3c2410_wait_idle;
        nand_chip.nand_select_chip   = s3c2410_nand_select_chip;
        nand_chip.nand_deselect_chip = s3c2410_nand_deselect_chip;
        nand_chip.write_cmd          = s3c2410_write_cmd;
        nand_chip.write_addr         = s3c2410_write_addr;
        nand_chip.read_data          = s3c2410_read_data;
        /* 使能NAND Flash控制器, 初始化ECC, 禁止片选, 设置时序 */
        s3c2410nand->NFCONF = (1<<15)|(1<<12)|(1<<11)|(TACLS<<8)|(TWRPH0<<4)|(TWRPH1<<0);
    }
    else
    {
        nand_chip.nand_reset         = s3c2440_nand_reset;
        nand_chip.wait_idle          = s3c2440_wait_idle;
        nand_chip.nand_select_chip   = s3c2440_nand_select_chip;
        nand_chip.nand_deselect_chip = s3c2440_nand_deselect_chip;
        nand_chip.write_cmd          = s3c2440_write_cmd;
#ifdef LARGER_NAND_PAGE
        nand_chip.write_addr         = s3c2440_write_addr_lp;
#else
        nand_chip.write_addr         = s3c2440_write_addr;
#endif
        nand_chip.read_data          = s3c2440_read_data;
        /* 设置时序 */
        s3c2440nand->NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4);
        /* 使能NAND Flash控制器, 初始化ECC, 禁止片选 */
        s3c2440nand->NFCONT = (1<<4)|(1<<1)|(1<<0);
    }
    
    /* 复位NAND Flash */
    nand_reset();
}

这段代码是用于操作Nand Flash的一段源代码。首先我们看到开始定义了一个结构体,里面放置的全是函数指针。他们等待被赋值。然后是定义了一个这种结构体的变量nand_chip。然后是即将操作的函数声明。

这些函数将会被其他文件的函数调用。因为在这些函数里一般都只有一条语句,就是调用结构体的函数指针。

接着往下看,是针对两种架构的函数声明。然后在nand_init函数中对nand_chip进行赋值,这也就是我们刚刚讲过的,将函数的入口地址赋值给指针。现在nand_chip已经被赋值了。如果我们要对Nand进行读写操作,我们只需调用nand_chip.read_data()或者nand_chip.write_cmd()等等函数。

这是比较方便的一点,另一点,此代码具有很强的移植性,如果我们又用到了一种芯片,我们就不需要改变整篇代码,只需在nand_init函数中增加对新的芯片的判断,然后给nand_chip赋值即可。所以我说函数指针会使代码具有可移植性,易修改性。

推荐文章:

C语言进阶之 回调函数详解

3.操作寄存器的位

#define GPFCON      (*(volatile unsigned long *)0x56000050)
GPFCON &=~ (0x1<<3);
GPFCON |= (0x1<<3);

结合我们刚刚所讲的,首先宏定义寄存器,这样我们能够直接给它赋值。位操作中,我们要学会程序第2行中的,给目标位清0,这里是给bit3清0。第3行则是给bit3置1。

目录
相关文章
|
21天前
|
传感器 人工智能 物联网
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
40 6
|
26天前
|
存储 安全 物联网
C语言物联网开发之设备安全与代码可靠性隐患
物联网设备的C语言代码安全与可靠性至关重要。一是防范代码安全漏洞,包括缓冲区溢出和代码注入风险,通过使用安全函数和严格输入验证来预防。二是提高代码跨平台兼容性,利用`stdint.h`定义统一的数据类型,并通过硬件接口抽象与适配减少平台间的差异,确保程序稳定运行。
|
20天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
39 1
|
20天前
|
NoSQL 编译器 C语言
C语言调试是开发中的重要技能,涵盖基本技巧如打印输出、断点调试和单步执行,以及使用GCC、GDB、Visual Studio和Eclipse CDT等工具。
C语言调试是开发中的重要技能,涵盖基本技巧如打印输出、断点调试和单步执行,以及使用GCC、GDB、Visual Studio和Eclipse CDT等工具。高级技巧包括内存检查、性能分析和符号调试。通过实践案例学习如何有效定位和解决问题,同时注意保持耐心、合理利用工具、记录过程并避免过度调试,以提高编程能力和开发效率。
36 1
|
20天前
|
传感器 存储 物联网
在物联网(IoT)快速发展的今天,C语言作为物联网开发中的关键工具,以其高效、灵活、可移植的特点
在物联网(IoT)快速发展的今天,C语言作为物联网开发中的关键工具,以其高效、灵活、可移植的特点,广泛应用于嵌入式系统开发、通信协议实现及后端服务构建等领域,成为推动物联网技术进步的重要力量。
29 1
|
20天前
|
人工智能 安全 算法
基于C语言的嵌入式系统开发,涵盖嵌入式系统概述、C语言的优势、开发流程、关键技术、应用实例及面临的挑战与未来趋势。
本文深入探讨了基于C语言的嵌入式系统开发,涵盖嵌入式系统概述、C语言的优势、开发流程、关键技术、应用实例及面临的挑战与未来趋势。C语言因其高效、可移植、灵活及成熟度高等特点,在嵌入式系统开发中占据重要地位。文章还介绍了从系统需求分析到部署维护的完整开发流程,以及中断处理、内存管理等关键技术,并展望了嵌入式系统在物联网和人工智能领域的未来发展。
44 1
|
21天前
|
存储 算法 C语言
用C语言开发游戏的实践过程,包括选择游戏类型、设计游戏框架、实现图形界面、游戏逻辑、调整游戏难度、添加音效音乐、性能优化、测试调试等内容
本文探讨了用C语言开发游戏的实践过程,包括选择游戏类型、设计游戏框架、实现图形界面、游戏逻辑、调整游戏难度、添加音效音乐、性能优化、测试调试等内容,旨在为开发者提供全面的指导和灵感。
36 2
|
26天前
|
存储 网络协议 物联网
C 语言物联网开发之网络通信与数据传输难题
本文探讨了C语言在物联网开发中遇到的网络通信与数据传输挑战,分析了常见问题并提出了优化策略,旨在提高数据传输效率和系统稳定性。
|
3月前
|
存储 传感器 物联网
结合物联网开发探讨C语言的变量
在物联网(IoT)开发中,C语言的变量起着至关重要的作用。由于物联网设备资源有限,C语言的高效性和对硬件的直接控制使其成为开发嵌入式系统的首选。
|
4月前
|
Linux Shell C语言
C语言与驱动开发基础
C语言与驱动开发基础
43 0