生活中的故事
从前有坐山,山上有座庙,庙里有个老和尚给小和尚将故事,讲的就是:
"从前有座山,山上有座庙,庙里有个老和尚给小和尚讲故事,讲的就是:
"从前有座山,山上有座庙..."
"从前有座山……"
上面的故事有个共同的特征:自身中又包含了自己,该种思想在数学和编程中非常有用,因为有些时候,我们遇到的问题直接并不好解决,但是发现将原问题拆分成其子问题之后,子问题与原问题有相同的解法,等子问题解决之后,原问题就迎刃而解了。
递归的概念
一个方法在执行过程中调用自身, 就称为 "递归".
递归相当于数学上的 "数学归纳法", 有一个起始条件, 然后有一个递推公式.
例如, 我们求 N!
起始条件: N = 1 的时候, N! 为 1. 这个起始条件相当于递归的结束条件.
递归公式: 求 N! , 直接不好求, 可以把问题转换成 N! => N * (N-1)!
递归的必要条件:
1. 将原问题划分成其子问题,注意:子问题必须要与原问题的解法相同
2. 递归出口
代码示例:
递归求 N 的阶乘
public static void main(String[] args) { int n = 5; int ret = factor(n); System.out.println("ret = " + ret); } public static int factor(int n) { if (n == 1) { return 1; } return n * factor(n - 1); // factor 调用函数自身 } // 执行结果 ret = 120
递归执行过程分析
递归的程序的执行过程不太容易理解, 要想理解清楚递归, 必须先理解清楚 "方法的执行过程", 尤其是 "方法执行结束 之后, 回到调用位置继续往下执行".
代码示例:
递归求 N 的阶乘
public static void main(String[] args) {
int n = 5;
int ret = factor(n);
System.out.println("ret = " + ret);
}
public static int factor(int n) {
System.out.println("函数开始, n = " + n);
if (n == 1) {
System.out.println("函数结束, n = 1 ret = 1");
return 1;
}
int ret = n * factor(n - 1);
System.out.println("函数结束, n = " + n + " ret = " + ret);
return ret;
}
// 执行结果 函数开始, n = 5 函数开始, n = 4 函数开始, n = 3 函数开始, n = 2 函数开始, n = 1
函数结束, n = 1 ret = 1
函数结束, n = 2 ret = 2
函数结束, n = 3 ret = 6
函数结束, n = 4 ret = 24
函数结束, n = 5 ret = 120
ret = 120
执行过程图
关于 "调用栈"
方法调用的时候, 会有一个 "栈" 这样的内存空间描述当前的调用关系. 称为调用栈.
每一次的方法调用就称为一个 "栈帧", 每个栈帧中包含了这次调用的参数是哪些, 返回到哪里继续执行等信息.
后面我们借助 IDEA 很容易看到调用栈的内容.
递归练习
代码示例1
按顺序打印一个数字的每一位(例如 1234 打印出 1 2 3 4) public static void print(int num) { if (num > 9) { print(num / 10); } System.out.println(num % 10); }
代码示例2
递归求 1 + 2 + 3 + ... + 10
public static int sum(int num) { if (num == 1) { return 1; } return num + sum(num - 1); }
代码示例3
写一个递归方法,输入一个非负整数,返回组成它的数字之和.
例如,输入 1729, 则应该返回 1+7+2+9,它的和是19
public static int sum(int num) { if (num < 10) { return num; } return num % 10 + sum(num / 10); }
代码示例4
求斐波那契数列的第 N 项
public static int fib(int n) { if (n == 1 || n == 2) { return 1; } return fib(n - 1) + fib(n - 2); }
当我们求 fib(40) 的时候发现, 程序执行速度极慢. 原因是进行了大量的重复运算.
class Test { public static int count = 0; // 这个是类的成员变量. 后面会详细介绍到. public static void main(String[] args) { System.out.println(fib(40)); System.out.println(count); } public static int fib(int n) { if (n == 1 || n == 2) { return 1; } if (n == 3) { count++; } return fib(n - 1) + fib(n - 2); } } // 执行结果 102334155 39088169 // fib(3) 重复执行了 3 千万次.
可以使用循环的方式来求斐波那契数列问题, 避免出现冗余运算.
public static int fib(int n) { int last2 = 1; int last1 = 1; int cur = 0; for (int i = 3; i <= n; i++) { cur = last1 + last2; last2 = last1; last1 = cur; } return cur; }
此时程序的执行效率大大提高了.