m基于OFDM+QPSK和LDPC编译码以及LS信道估计的无线图像传输matlab仿真,输出误码率,并用图片进行测试

简介: m基于OFDM+QPSK和LDPC编译码以及LS信道估计的无线图像传输matlab仿真,输出误码率,并用图片进行测试

1.算法仿真效果
matlab2022a仿真结果如下:

eabf849c3994700a66c85fcc934d3bc5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
e001273106ba9f2024bc675c86d61a39_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
无线图像传输: 图像数据首先被分割成多个数据包,然后每个数据包经过LDPC编码,接着按OFDM符号映射规则将编码后的比特流映射到各个子载波上进行QPSK调制。在接收端,先利用LS信道估计恢复出原始信号,再经解码得到图像数据,最后还原出原始图像。结合OFDM、QPSK调制、LDPC编译码和LS信道估计,可以构建一个鲁棒的无线图像传输系统。该系统能够在多径和衰落信道中实现可靠的图像传输,通过纠错编码提高传输的可靠性,并通过信道估计来补偿信道对信号的影响

    OFDM(正交频分复用)与QPSK调制

     OFDM是一种多载波调制技术,其基本思想是将高速数据流分散到多个并行的窄带子载波上进行传输,每个子载波上的数据速率较低,从而降低符号间干扰。对于每个子载波,采用的是QPSK(Quadrature Phase Shift Keying)调制方式,它通过两个正交的基带信号来携带信息,每个信号有2个可能的状态,因此一个QPSK符号可以表示4种状态,对应二进制的00, 01, 10, 11。

    LDPC(低密度奇偶校验码)编解码

    LDPC码是一种具有稀疏校验矩阵的线性分组码,其性能接近香农极限。编码过程主要是根据预定义的校验矩阵H,将信息比特通过线性运算转化为包含校验比特的编码比特序列。解码通常采用 belief propagation(BP)算法或者最小和(min-sum)算法,在接收端对收到的带有噪声的数据进行迭代软判决译码。

   LS(最小二乘)信道估计

   在无线通信系统中,由于多径效应等因素,信号在传输过程中会受到信道的影响。LS信道估计算法主要用于估计发送端到接收端的信道频率响应。假设已知导频信号x[n],接收到的信号为y[n],则信道冲激响应h[n]可以通过以下公式估计:

    h_LS = (X^T X)^{-1} X^T y

    其中,X是导频信号构成的矩阵,y是接收到的对应导频位置的信号向量,h_LS是对信道冲激响应的LS估计。

3.MATLAB核心程序
```for i=1:length(SNR_dB)
i
Error = 0;
err_all = 0;
Rimages = [];
sigma = sqrt(1./(210^(SNR_dB(i)/10)R));
for iii=1:length(datbin)/Iimage_len
[i,iii]
%%
%以单天线方式产生测试信号
%msg = rand(LenNc/4,1)>=0.5;
msg = [datbin(Iimage_len
(iii-1)+1:Iimage_leniii)]';
%turbo编码
%LDPC编码
seridata1 = [mod(msg'
G,2)];
seridata = [seridata1,zeros(1,LenNc-length(seridata1))]';
%QPSK映射
[Qpsk0,Dqpsk_pilot,symbol_bit] = func_piQPSK_mod(seridata);
%变换为矩阵
Qpsk_matrix = reshape(Qpsk0,fftlen,Nc);
[Pilot_in,pilot_num,Pilot_seq,pilot_space] = func_insert_pilot(Dqpsk_pilot,Qpsk_matrix,pilot_type,T,TG);
Pilot_in = fft(Pilot_in);
%sub carrier mapping
Pilot_in = func_subcarrierMap(Pilot_in);
%IFFT transform,产生OFDM信号
ifft_out = ifft(Pilot_in);
%插入包含间隔
Guard_int = ceil(BWs/fftlen);
Guard_int_ofdm = func_guard_interval_insert(ifft_out,fftlen,Guard_int);
%将矩阵数据转换为串行进行输出
Guard_int_ofdm_out = reshape(Guard_int_ofdm,1,(fftlen+Guard_int)
(Nc+pilot_num));

   %%
    %Step1:大规模MIMO信道
    [Hm,Hmmatrix]            = func_mychannels(Radius,Scale1,Scale2,Nh,Nv);       
    %Step2:多径参数和大规模MIMO参数输入到信道模型中
    %信道采样点数,每个调制符号采一个点
    [passchan_ofdm_symbol]   = func_conv_channels(Hmmatrix,Guard_int_ofdm_out,Nmultipath,Pow_avg,delay_multi,Fre_offset,timeval,iii);
    %Step3:噪声信道 
    Rec_ofdm_symbol          = awgn(passchan_ofdm_symbol,SNR_dB(i),'measured');

   %%
    %开始接收
    Guard_int_remove = func_guard_interval_remove(Rec_ofdm_symbol,(fftlen+Guard_int),Guard_int,(Nc+pilot_num));
    %FFT
    fft_out          = fft(Guard_int_remove);
    %sub carrier demapping
    fft_out          = func_desubcarrierMap(fft_out);
    fft_out          = ifft(fft_out);
    %信道估计
    %ls
    [Sig_Lrmmse,Hs]  = func_ls_estimation(fft_out,pilot_space,Pilot_seq,pilot_num);
    %解调
    Dqpsk            = func_pideMapping(Sig_Lrmmse,fftlen*Nc);
    %LDPC解码
    z_hat            = func_Dec(2*Dqpsk(1:end-(Len*Nc-length(seridata1)))-1,sigma,H,max_iter);
    Dqpsk_decode     = round(z_hat(size(G,2)+1-size(G,1):size(G,2)));
    Rimages = [Rimages,[Dqpsk_decode(1:Len*Nc/4)]'];
end
Rimages_snr{i} = Rimages;

end
```

相关文章
|
26天前
|
弹性计算 网络协议 Linux
云服务器评估迁移时间与测试传输速度
云服务器评估迁移时间与测试传输速度
|
3月前
|
Windows
基于MATLAB实现的OFDM仿真调制解调,BPSK、QPSK、4QAM、16QAM、32QAM,加性高斯白噪声信道、TDL瑞利衰落信道
本文通过MATLAB仿真实现了OFDM系统中BPSK、QPSK、4QAM、16QAM和32QAM调制解调过程,并在加性高斯白噪声信道及TDL瑞利衰落信道下计算了不同信噪比条件下的误比特率。
154 4
基于MATLAB实现的OFDM仿真调制解调,BPSK、QPSK、4QAM、16QAM、32QAM,加性高斯白噪声信道、TDL瑞利衰落信道
|
3月前
|
算法 数据安全/隐私保护
基于LS算法的OFDM+QPSK系统信道估计均衡matlab性能仿真
基于MATLAB 2022a的仿真展示了OFDM+QPSK系统中最小二乘(LS)算法的信道估计与均衡效果。OFDM利用多个低速率子载波提高频谱效率,通过循环前缀克服多径衰落。LS算法依据导频符号估计信道参数,进而设计均衡器以恢复数据符号。核心程序实现了OFDM信号处理流程,包括加性高斯白噪声的加入、保护间隔去除、快速傅立叶变换及信道估计与均衡等步骤,并最终计算误码率,验证了算法的有效性。
86 2
|
5月前
|
机器学习/深度学习 自然语言处理 算法
m基于深度学习的OFDM+QPSK链路信道估计和均衡算法误码率matlab仿真,对比LS,MMSE及LMMSE传统算法
**摘要:** 升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。
97 8
|
4月前
|
传感器 缓存 数据可视化
毕设(六)——通过pico用NB模块传输测试
毕设(六)——通过pico用NB模块传输测试
|
6月前
|
机器学习/深度学习 算法
基于BP神经网络的QPSK解调算法matlab性能仿真
该文介绍了使用MATLAB2022a实现的QPSK信号BP神经网络解调算法。QPSK调制信号在复杂信道环境下受到干扰,BP网络能适应性地补偿失真,降低误码率。核心程序涉及数据分割、网络训练及性能评估,最终通过星座图和误码率曲线展示结果。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
191 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
124 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
88 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度