使用TensorRT-LLM进行生产环境的部署指南

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: TensorRT-LLM是一个由Nvidia设计的开源框架,用于在生产环境中提高大型语言模型的性能。该框架是基于 TensorRT 深度学习编译框架来构建、编译并执行计算图,并借鉴了许多 FastTransformer 中高效的 Kernels 实现,并且可以利用 NCCL 完成设备之间的通讯。

TensorRT-LLM是一个由Nvidia设计的开源框架,用于在生产环境中提高大型语言模型的性能。该框架是基于 TensorRT 深度学习编译框架来构建、编译并执行计算图,并借鉴了许多 FastTransformer 中高效的 Kernels 实现,并且可以利用 NCCL 完成设备之间的通讯。

虽然像vLLM和TGI这样的框架是增强推理的一个很好的起点,但它们缺乏一些优化,因此很难在生产中扩展它们。所以Nvidia在TensorRT的基础上有开发了TensorRT-LLM,像Anthropic, OpenAI, Anyscale等大公司已经在使用这个框架为数百万用户提供LLM服务。

TensorRT-LLM

与其他推理技术不同,TensorRT LLM不使用原始权重为模型服务。它会编译模型并优化内核,这样可以在Nvidia GPU上有效地服务。运行编译模型的性能优势远远大于运行原始模型。这是TensorRT LLM非常快的主要原因之一。

原始模型权重和优化选项(如量化级别、张量的并行性、管道并行性等)一起传递给编译器。然后编译器获取该信息并输出针对特定GPU优化的模型二进制文件。

但是这里整个模型编译过程必须在GPU上进行。生成的编译模型也是专门针对运行它的GPU进行优化的。例如,在A40 GPU上编译模型,则可能无法在A100 GPU上运行它。所以无论在编译过程中使用哪种GPU,都必须使用相同的GPU进行推理。

但是TensorRT LLM并不支持开箱即用所有的大型语言模型(原因是每个模型架构是不同的)。但是TensorRT所作的做深度图级优化是支持大多数流行的模型,如Mistral、Llama和Qwen等。具体支持的模型可以参考TensorRT LLM Github官方的列表

TensorRT-LLM的好处

TensorRT LLM python包允许开发人员在不了解c++或CUDA的情况下以最高性能运行LLM。

分页注意力

大型语言模型需要大量内存来存储每个令牌的键和值。随着输入序列变长,这种内存使用会变得非常大。

通常情况下,序列的键和值必须连续存储。所以即使你在序列的内存分配中释放了空间,你也不能把这个空间用于其他序列。这会导致碎片化和浪费。

分页注意力将键/值分成而不是连续的页,这样可以放在内存中的任何地方,如果您在中间释放一些分页,那么这些空间可以用于其他序列。

这可以防止碎片,并允许更高的内存利用率。在生成输出序列时,可以根据需要动态地分配和释放页面。

高效KV缓存

llm有数十亿个参数,这使得它们运行推理时速度缓慢且占用大量内存。KV缓存通过缓存LLM的层输出和激活来帮助解决这个问题,因此它们不需要为每个推理重新计算。

下面是它的工作原理:

在推理期间,当LLM执行每一层时,输出将被缓存到具有唯一键的键值存储中。当后续推断使用相同的层输入时,不是重新计算层,而是使用键检索缓存的输出。这避免了冗余计算,减少了激活内存,提高了推理速度和内存效率。

下面我们开始使用TensorRT-LLM部署一个模型

TensorRT-LLM部署教程

使用TensorRT-LLM部署模型首先就是要对模型进行编译,这里我们将使用Mistral 7B instruction v0.2。编译阶段需要GPU,所以为了方便使用我们直接在Colab上操作。

TensorRT LLM主要支持高端Nvidia gpu。所以我们在Colab上选择了A100 40GB GPU。

下载TensorRT-LLM git库。这个repo包含了编译模型所需的所有模块和脚本。

 !git clone https://github.com/NVIDIA/TensorRT-LLM.git
 %cd TensorRT-LLM/examples/llama

然后安装所需的包

 !pip install tensorrt_llm -U --pre --extra-index-url https://pypi.nvidia.com
 !pip install huggingface_hub pynvml mpi4py
 !pip install -r requirements.txt

下载模型

 from huggingface_hub import snapshot_download
 from google.colab import userdata


 snapshot_download(
     "mistralai/Mistral-7B-Instruct-v0.2",
     local_dir="tmp/hf_models/mistral-7b-instruct-v0.2",
     max_workers=4
 )

这一步可以查看Colab的tmp/hf_models目录,在那里可以看到模型权重。

然后是加载模型,并转换成特定的tensorRT LLM格式

 !python convert_checkpoint.py --model_dir ./tmp/hf_models/mistral-7b-instruct-v0.2 \
                              --output_dir ./tmp/trt_engines/1-gpu/ \
                              --dtype float16

下一步就是使用trtllm-build命令编译模型。如果需要量化和其他优化,可以在这里指定参数。为了简单起见,我没有使用任何额外的优化。

 !trtllm-build --checkpoint_dir ./tmp/trt_engines/1-gpu/ \
             --output_dir ./tmp/trt_engines/compiled-model/ \
             --gpt_attention_plugin float16 \
             --gemm_plugin float16 \
             --max_input_len 32256

Mistral 7B instruction v0.2支持32K上下文长度。所以这里在max_input_length标志设置了上下文长度。

编译模型需要15-30分钟

模型编译完成后就可以直接使用了。我们这里还要介绍一下模型部署的方法,有很多方法可以部署这个编译后的模型比如像FastAPI这样的简单工具,或者像triton推理服务器这样更复杂的工具。

当使用像FastAPI这样的工具时,开发人员必须设置API服务器,编写Dockerfile,并正确配置CUDA,这里面包含了很多服务器后端的工作,有时候我们并不熟悉,所以这里我们介绍一个简单的开源工具Truss。

Truss允许开发人员使用GPU打包他们的模型,并在任何云环境中运行它们。它有很多很棒的功能,使集成模型变得轻而易举。使用Truss的主要好处是,可以轻松地将具有GPU支持的模型容器化,并将其部署到任何云环境中。

安装:

 pip install --upgrade truss

如果从头开始创建Truss项目,你可以运行下面的命令:

 truss init mistral-7b-tensort-llm

mistral-7b-tensort-llm是我们项目的名称,可以随便编写。运行上面的命令会自动生成部署Truss所需的文件。

下面是mistral-7b- tensort -llm-truss的目录结构:

 ├── mistral-7b-tensorrt-llm-truss
 │   ├── config.yaml
 │   ├── model
 │   │   ├── __init__.py
 │   │   └── model.py
 |   |   └── utils.py
 |   ├── requirements.txt

以下是上述文件的快速介绍:

1、config.yaml用于为模型设置各种配置,包括其资源、依赖项、环境变量等。在这里,我们可以指定模型名称、要安装的Python依赖项以及要安装的系统包。

2、model/model.py是Truss的核心。它包含将在Truss服务器上执行的Python代码。在model.py中有两个主要方法:load()和predict()。

load方法是我们从hugs face下载编译模型并初始化TensorRT LLM的地方;predict方法接收HTTP请求并调用模型。

3、model/utils.py包含model.py文件的一些辅助函数。utils.py文件不是我们自己编写的,可以直接从TensorRT LLM存储库中获取的。

4、含运行编译模型所需的Python依赖项,truss会使用它来初始化我们的环境。

model.py包含执行的主代码,让我们首先看一下load函数。

 import subprocess
 subprocess.run(["pip", "install", "tensorrt_llm", "-U", "--pre", "--extra-index-url", "https://pypi.nvidia.com"])

 import torch
 from model.utils import (DEFAULT_HF_MODEL_DIRS, DEFAULT_PROMPT_TEMPLATES,
                    load_tokenizer, read_model_name, throttle_generator)

 import tensorrt_llm
 import tensorrt_llm.profiler
 from tensorrt_llm.runtime import ModelRunnerCpp, ModelRunner
 from huggingface_hub import snapshot_download

 STOP_WORDS_LIST = None
 BAD_WORDS_LIST = None
 PROMPT_TEMPLATE = None

 class Model:
     def __init__(self, **kwargs):
         self.model = None
         self.tokenizer = None
         self.pad_id = None
         self.end_id = None
         self.runtime_rank = None
         self._data_dir = kwargs["data_dir"]

     def load(self):
         snapshot_download(
             "htrivedi99/mistral-7b-v0.2-trtllm",
             local_dir=self._data_dir,
             max_workers=4,
         )

         self.runtime_rank = tensorrt_llm.mpi_rank()

         model_name, model_version = read_model_name(f"{self._data_dir}/compiled-model")
         tokenizer_dir = "mistralai/Mistral-7B-Instruct-v0.2"

         self.tokenizer, self.pad_id, self.end_id = load_tokenizer(
             tokenizer_dir=tokenizer_dir,
             vocab_file=None,
             model_name=model_name,
             model_version=model_version,
             tokenizer_type="llama",
         )


         runner_cls = ModelRunner
         runner_kwargs = dict(engine_dir=f"{self._data_dir}/compiled-model",
                              lora_dir=None,
                              rank=self.runtime_rank,
                              debug_mode=False,
                              lora_ckpt_source="hf",
                             )

         self.model = runner_cls.from_dir(**runner_kwargs)

在文件的顶部,我们导入了必要的模块,特别是tensorrt_llm;然后在load函数中,我们使用snapshot_download函数下载编译后的模型;然后使用model/utils.py附带的load_tokenizer函数下载模型的标记器;最后使用TensorRT LLM使用ModelRunner类加载编译后的模型。

下面就是predict函数

 def predict(self, request: dict):

         prompt = request.pop("prompt")
         max_new_tokens = request.pop("max_new_tokens", 2048)
         temperature = request.pop("temperature", 0.9)
         top_k = request.pop("top_k",1)
         top_p = request.pop("top_p", 0)
         streaming = request.pop("streaming", False)
         streaming_interval = request.pop("streaming_interval", 3)

         batch_input_ids = self.parse_input(tokenizer=self.tokenizer,
                                       input_text=[prompt],
                                       prompt_template=None,
                                       input_file=None,
                                       add_special_tokens=None,
                                       max_input_length=1028,
                                       pad_id=self.pad_id,
                                       )
         input_lengths = [x.size(0) for x in batch_input_ids]

         outputs = self.model.generate(
             batch_input_ids,
             max_new_tokens=max_new_tokens,
             max_attention_window_size=None,
             sink_token_length=None,
             end_id=self.end_id,
             pad_id=self.pad_id,
             temperature=temperature,
             top_k=top_k,
             top_p=top_p,
             num_beams=1,
             length_penalty=1,
             repetition_penalty=1,
             presence_penalty=0,
             frequency_penalty=0,
             stop_words_list=STOP_WORDS_LIST,
             bad_words_list=BAD_WORDS_LIST,
             lora_uids=None,
             streaming=streaming,
             output_sequence_lengths=True,
             return_dict=True)

         if streaming:
             streamer = throttle_generator(outputs, streaming_interval)

             def generator():
                 total_output = ""
                 for curr_outputs in streamer:
                     if self.runtime_rank == 0:
                         output_ids = curr_outputs['output_ids']
                         sequence_lengths = curr_outputs['sequence_lengths']
                         batch_size, num_beams, _ = output_ids.size()
                         for batch_idx in range(batch_size):
                             for beam in range(num_beams):
                                 output_begin = input_lengths[batch_idx]
                                 output_end = sequence_lengths[batch_idx][beam]
                                 outputs = output_ids[batch_idx][beam][
                                           output_begin:output_end].tolist()
                                 output_text = self.tokenizer.decode(outputs)

                                 current_length = len(total_output)
                                 total_output = output_text
                                 yield total_output[current_length:]
             return generator()
         else:
             if self.runtime_rank == 0:
                 output_ids = outputs['output_ids']
                 sequence_lengths = outputs['sequence_lengths']
                 batch_size, num_beams, _ = output_ids.size()
                 for batch_idx in range(batch_size):
                     for beam in range(num_beams):
                         output_begin = input_lengths[batch_idx]
                         output_end = sequence_lengths[batch_idx][beam]
                         outputs = output_ids[batch_idx][beam][
                                   output_begin:output_end].tolist()
                         output_text = self.tokenizer.decode(outputs)
                         return {"output": output_text}

predict函数接受一些模型输入,如提示、max_new_tokens、温度等。我们使用请求在函数的顶部提取所有这些值。调用LLM模型来使用self.model.generate函数生成输出。generate函数接受各种参数,帮助控制LLM的输出。

为了在云中运行我们的模型,还需要将其容器化。Truss会负责为我们创建Dockerfile并打包所有内容,所以我们不需要做太多事情。

在mistral-7b- tensort -llm-truss目录之外创建一个名为main.py的文件。将以下代码粘贴到其中:

 import truss
 from pathlib import Path

 tr = truss.load("./mistral-7b-tensorrt-llm-truss")
 command = tr.docker_build_setup(build_dir=Path("./mistral-7b-tensorrt-llm-truss"))
 print(command)

运行main.py文件并查看mistral-7b- tensort -llm-truss目录。应该会看到自动生成的一堆文件。下面就可以使用docker构建容器。依次运行以下命令:

 docker build mistral-7b-tensorrt-llm-truss -t mistral-7b-tensorrt-llm-truss:latest
 docker tag mistral-7b-tensorrt-llm-truss <docker_user_id>/mistral-7b-tensorrt-llm-truss
 docker push <docker_user_id>/mistral-7b-tensorrt-llm-truss

这些docker的配置文件就是truss为我们自动生成好的,我们下面简单的介绍一下看k8s的部署,我不会深入讨论如何设置GKE集群,因为这不在本文的讨论范围之内。

创建以下kubernetes部署:

 apiVersion: apps/v1
 kind: Deployment
 metadata:
   name: mistral-7b-v2-trt
   namespace: default
 spec:
   replicas: 1
   selector:
     matchLabels:
       component: mistral-7b-v2-trt-layer
   template:
     metadata:
       labels:
         component: mistral-7b-v2-trt-layer
     spec:
       containers:
       - name: mistral-container
         image: htrivedi05/mistral-7b-v0.2-trt:latest
         ports:
           - containerPort: 8080
         resources:
           limits:
             nvidia.com/gpu: 1
       nodeSelector:
         cloud.google.com/gke-accelerator: nvidia-tesla-a100
 ---
 apiVersion: v1
 kind: Service
 metadata:
   name: mistral-7b-v2-trt-service
   namespace: default
 spec:
   type: ClusterIP
   selector:
     component: mistral-7b-v2-trt-layer
   ports:
   - port: 8080
     protocol: TCP
     targetPort: 8080

这是一个标准的kubernetes部署,它运行一个映像为htrivedi05/mistral-7b-v0.2-trt:latest的容器。

可以通过运行命令创建部署:

 kubectl create -f mistral-deployment.yaml

分配kubernetes pod需要几分钟的时间。一旦pod开始运行,我们之前编写的load函数就会被执行。

一旦加载了模型后就可以在pod日志中看到类似Completed model.load()的执行时间为449234毫秒。要通过HTTP向模型发送请求,我们需要对服务进行端口转发。你可以使用下面的命令:

 kubectl port-forward svc/mistral-7b-v2-trt-service 8080

打开任意Python脚本并运行以下代码:

 import requests

 data = {"prompt": "What is a mistral?"}
 res = requests.post("http://127.0.0.1:8080/v1/models/model:predict", json=data)
 res = res.json()
 print(res)

将看到如下输出:

 {"output": "A Mistral is a strong, cold wind that originates in the Rhone Valley in France. It is named after the Mistral wind system, which is associated with the northern Mediterranean region. The Mistral is known for its consistency and strength, often blowing steadily for days at a time. It can reach speeds of up to 130 kilometers per hour (80 miles per hour), making it one of the strongest winds in Europe. The Mistral is also known for its clear, dry air and its role in shaping the landscape and climate of the Rhone Valley."}

这样我们的推理服务就部署成功了

性能基准测试

我运行了一些自定义基准测试,得到了以下结果:


可以看到TensorRT-LLM的加速推理还是很明显的

总结

在这篇文章中,我们演示了如何使用TensorRT LLM实现模型加速推理,文章内容涵盖了从编译LLM到在生产中部署模型的所有内容。

虽然TensorRT LLM比其他推理优化器更复杂,但性能提高也是非常明显。虽然该框架仍处于早期阶段,但是可以提供目前最先进的LLM优化。并且它是完全开源的可以商业化,我相信TensorRT LLM以后还会有更大的发展,因为毕竟是NVIDIA自己的产品.

TensorRT-LLM代码:

https://avoid.overfit.cn/post/22b19ff044984de69da655a67721cff3
作者:Het Trivedi

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
6月前
|
缓存 API 开发者
魔搭社区牵手FastChat&vLLM,打造极致LLM模型部署体验
FastChat是一个开放平台,用于训练、服务和评估基于LLM的ChatBot。
|
12月前
|
人工智能 监控 Swift
魔搭社区LLM模型部署实践 —— 以ChatGLM3为例
本文将以ChatGLM3-6B为例,介绍在魔搭社区如何部署LLM
|
SQL 前端开发 关系型数据库
LLM大模型实战 —— DB-GPT阿里云部署指南
DB-GPT 是一个实验性的开源应用,它基于FastChat,并使用vicuna-13b作为基础模型, 模型与数据全部本地化部署, 绝对保障数据的隐私安全。 同时此GPT项目可以直接本地部署连接到私有数据库, 进行私有数据处理, 目前已支持SQL生成、SQL诊断、数据库知识问答、数据处理等一系列的工作。
8812 2
|
2月前
|
算法 测试技术 AI芯片
CPU反超NPU,llama.cpp生成速度翻5倍!LLM端侧部署新范式T-MAC开源
【9月更文挑战第7天】微软研究院提出了一种名为T-MAC的创新方法,旨在解决大型语言模型在资源受限的边缘设备上高效部署的问题。T-MAC通过查表法在CPU上实现低比特LLM的高效推理,支持混合精度矩阵乘法,无需解量化。其通过位级查表实现统一且可扩展的解决方案,优化数据布局和重用率,显著提升了单线程和多线程下的mpGEMV及mpGEMM性能,并在端到端推理吞吐量和能效方面表现出色。然而,表量化和快速聚合技术可能引入近似和数值误差,影响模型准确性。论文详见:[链接](https://www.arxiv.org/pdf/2407.00088)。
121 10
|
3月前
|
人工智能 PyTorch 算法框架/工具
Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
【8月更文挑战第6天】Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
|
3月前
|
Linux API 开发工具
LLM大模型部署实战指南:Ollama简化流程,OpenLLM灵活部署,LocalAI本地优化,Dify赋能应用开发
【8月更文挑战第5天】LLM大模型部署实战指南:Ollama简化流程,OpenLLM灵活部署,LocalAI本地优化,Dify赋能应用开发
LLM大模型部署实战指南:Ollama简化流程,OpenLLM灵活部署,LocalAI本地优化,Dify赋能应用开发
|
5月前
|
弹性计算 人工智能 JSON
一键云部署:资源编排 ROS 轻松部署 LLM 流程编排服务 Flowise
Flowise 是一个开源低代码平台,用于构建定制化的 LLM 流程和 AI 代理。阿里云的 Resource Orchestration Service (ROS) 提供了一键部署 Flowise 到 ECS 实例的方案。用户只需在 ROS 控制台配置模板参数,如可用区和实例类型,即可完成部署。部署后,从资源栈输出获取 Flowise 服务地址以开始使用。ROS 模板定义了 VPC、ECS 实例等资源,并通过 ROS 自动化部署,简化了云上资源和应用的管理。
224 1
一键云部署:资源编排 ROS 轻松部署 LLM 流程编排服务 Flowise
|
6月前
|
人工智能 物联网 API
LLM 大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战
LLM 大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战
LLM 大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战
|
6月前
|
机器学习/深度学习 缓存 算法
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
|
6月前
|
弹性计算 人工智能 JSON
一键云部署:资源编排 ROS 轻松部署 LLM 应用开发平台 Dify
Dify是一款开源的LLM应用开发平台,融合BaaS和LLMOps理念,助力开发者快速构建生产级AI应用。阿里云的ROS提供IaC自动化部署服务,通过JSON/YAML/Terraform模板轻松部署Dify环境。以下是简化的部署步骤: 1. 登录ROS控制台的Dify部署页面。 2. 配置ECS实例参数。 3. 创建资源栈,完成部署后从输出获取Dify服务地址。 ROS模板定义了VPC、VSwitch、ECS实例等资源,通过ROS控制台创建资源栈实现自动化部署。这种方式高效、稳定,体现了IaC的最佳实践。
727 1