【MATLAB】语音信号识别与处理:SG滤波算法去噪及谱相减算法呈现频谱

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 【MATLAB】语音信号识别与处理:SG滤波算法去噪及谱相减算法呈现频谱

【MATLAB】语音信号识别与处理:SG滤波算法去噪及谱相减算法呈现频谱

微信公众号由于改变了推送规则,为了每次新的推送可以在第一时间出现在您的订阅列表中,记得将本公众号设为星标或置顶哦~

1 基本定义

SG 滤波算法(Savitzky - Golay 滤波算法)是一种数字信号处理算法,用于对信号进行平滑处理。该算法利用最小二乘法拟合局部数据段,然后用拟合的函数来估计每个数据点的值,从而实现平滑处理。 SG 滤波算法的优点是可以同时实现平滑和去噪,可以有效滤除高频噪声,对于非线性信号也有较好的适应性。此外,该算法计算速度快,不需要频域转换,适用于实时信号处理。 SG 滤波算法的缺点是需要选择合适的窗口大小和多项式阶数,不同的参数会对滤波效果产生影响。此外,该算法对于信号中存在较大幅值的局部突变或者斜率变化较大的段落,可能会产生较大的误差。在实际应用中,SG 滤波算法可以用于信号平滑、去噪、信号分析等领域。

谱相减算法呈现频谱:谱相减算法是一种音频降噪方法,通过将原始频谱与估计的噪声频谱进行相减,得到清晰的音频信号。该算法通常在频域进行操作,对频谱进行减法运算,并对结果进行逆变换以获得时间域的清晰信号。

2 定义和出图效果

附出图效果如下:

附视频教程操作:

【MATLAB】语音信号识别与处理:SG滤波算法去噪及谱相减算法呈现频谱

https://mbd.pub/o/bread/ZZublpxs

【MATLAB】语音信号识别与处理:史上最全的 9 种滤波算法去噪及谱相减算法呈现频谱

https://mbd.pub/o/bread/ZZublp1v

MATLAB 228 种科研算法及 23 期科研绘图合集

https://pan.baidu.com/s/186kMN0d3dQN2K6KprNhwGQ?pwd=6666

提取码:6666

关于代码有任何疑问,均可关注公众号(Lwcah)后,后台回复关键词:微信号。

获取 up 的个人微信号,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


目录
相关文章
|
3月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
2天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
10天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
2月前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
4月前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
6月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络的步态识别matlab仿真,数据库采用CASIA库
**核心程序**: 完整版代码附中文注释,确保清晰理解。 **理论概述**: 利用CNN从视频中学习步态时空特征。 **系统框架**: 1. 数据预处理 2. CNN特征提取 3. 构建CNN模型 4. 训练与优化 5. 识别测试 **CNN原理**: 卷积、池化、激活功能强大特征学习。 **CASIA数据库**: 高质量数据集促进模型鲁棒性。 **结论**: CNN驱动的步态识别展现高精度,潜力巨大,适用于监控和安全领域。
|
6月前
|
算法
基于kalman滤波的UAV三维轨迹跟踪算法matlab仿真
本文介绍了一种使用卡尔曼滤波(Kalman Filter)对无人飞行器(UAV)在三维空间中的运动轨迹进行预测和估计的方法。该方法通过状态预测和观测更新两个关键步骤,实时估计UAV的位置和速度,进而生成三维轨迹。在MATLAB 2022a环境下验证了算法的有效性(参见附图)。核心程序实现了状态估计和误差协方差矩阵的更新,并通过调整参数优化滤波效果。该算法有助于提高轨迹跟踪精度和稳定性,适用于多种应用场景,例如航拍和物流运输等领域。
395 12
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于CNN卷积神经网络的MQAM调制识别matlab仿真
**理论**: 利用CNN自动识别MQAM调制信号,通过学习星座图特征区分16QAM, 64QAM等。CNN从原始数据提取高级特征,优于传统方法。 - **CNN结构**: 自动特征学习机制,适配多种MQAM类型。 - **优化**: 损失函数指导网络参数调整,提升识别准确度。 - **流程**: 大量样本训练+独立测试评估,确保模型泛化能力。 - **展望**: CNN强化无线通信信号处理,未来应用前景广阔。
|
6月前
|
机器学习/深度学习 算法 BI
基于深度学习网络的USB摄像头实时视频采集与手势检测识别matlab仿真
**摘要:** 本文介绍了使用MATLAB2022a实现的基于GoogLeNet的USB摄像头手势识别系统。系统通过摄像头捕获视频,利用深度学习的卷积神经网络进行手势检测与识别。GoogLeNet网络的Inception模块优化了计算效率,避免过拟合。手势检测涉及RPN生成候选框,送入网络进行分类。系统架构包括视频采集、手势检测与识别、以及决策反馈。通过GPU加速和模型优化保证实时性能,应用于智能家居等场景。
基于高通滤波器的ECG信号滤波及心率统计matlab仿真
**摘要:** 使用MATLAB2022a,实施高通滤波对ECG信号预处理,消除基线漂移,随后分析心率。系统仿真展示效果,核心代码涉及IIR HPF设计,如二阶滤波器的差分方程。通过滤波后的信号,检测R波计算RR间期,从而得到心率。滤波与R波检测是心电生理研究的关键步骤,平衡滤波性能与计算资源是设计挑战。