电影推荐算法2

简介: 电影推荐算法2

模型创建

title _ count, title _ set, genres2int, features, targets _ values, ratings, users, movies, data, movies _ orig, users _ orig = pickle.load (open (‘preprocess.p’, mode = ‘rb’))

加载数据后定义神经网络的模型结构:

1)定义参数

相关代码如下:

3)定义用户嵌入矩阵

在预处理数据时将UserID、MovieID的字段转成数字,当作嵌入矩阵的索引,在网络的第一层使用嵌入层,维度是(N,32)和(N,16),其中N是电影总数。定义用户嵌入矩阵的相关代码如下:

4)定义电影嵌入矩阵

相关代码如下:

5)定义电影类型嵌入矩阵

有时一个电影有多个类型,从嵌入矩阵索引出来是一个(n,32)的矩阵,这里的n是指某部电影所包含的类型。因为有多个类型,所以要将这个矩阵求和,变成(1,32)的向量。相关代码如下:

电影名的处理比较特殊,未使用循环神经网络,而是用了文本卷积网络。网络的第一层是词嵌入层,由每个单词的嵌入向量组成矩阵。第二层使用多个不同尺寸(窗口大小)的卷积核在嵌入矩阵上做卷积,窗口大小指的是每次卷积覆盖几个单词。这里与图像做卷积不同,图像卷积通常用2×2、3×3、5×5的尺寸,而文本卷积要覆盖整个单词的嵌入向量,尺寸是单词数、向量维度,例如,每次滑动3、4或5个单词。第三层网络是最大池化得到一个长向量,第四层使用丢弃做正则化,得到电影Title的特征。相关代码如下:

7)全连接层

从嵌入层索引出特征后,传入全连接层,将输出再次传入全连接层,模型结构如图4-11所示,最终分别得到(1,200)的用户和电影两个特征向量。

8)定义计算图

目的是训练出用户特征和电影特征,在实现推荐功能时使用。得到这两个特征以后,可以选择任意的方式来拟合评分。对用户特征和电影特征两个(1,200)向量做乘法,将结果与真实评分做回归,采用MSE优化损失。相关代码如下:

.模型训练

定义超参数的代码如下:其中,一个batch就是在一次前向/后向传播过程用到的训练样例数量,训练5轮,每轮第一个batch_size为3125,作为训练集,训练步长为20,第二个batch_size为781,作为测试集,训练步长为20,训练集训练结果如图4-12所示,测试集训练结果如图4-13所示。

通过观察训练集和测试集损失函数的大小来评估模型的训练程度,进行模型训练的进一步决策。一般来说,训练集和测试集的损失函数不变且基本相等为模型训练的较佳状态。可以将训练过程中保存的损失函数以图片的形式表现出来,方便观察,相关代码如下:

获取特征矩阵

本部分包括定义函数张量、生成电影特征矩阵、生成用户特征矩阵。

1)定义函数用于获取保存的张量

相关代码如下:

目录
相关文章
|
7月前
|
搜索推荐 算法 Java
基于springboot+vue协同过滤算法的电影推荐系统
基于springboot+vue协同过滤算法的电影推荐系统
|
7月前
|
数据采集 机器学习/深度学习 算法
电影推荐算法
电影推荐算法
59 0
|
7月前
|
算法 搜索推荐 Python
python协同过滤算法实现电影推荐
【1月更文挑战第3天】协同过滤是一种常用的推荐算法,它基于用户的历史行为和其他用户的行为进行推荐。在电影推荐中,协同过滤算法可以根据用户对电影的评分来推荐相似的电影给用户。
159 3
|
7月前
|
搜索推荐 前端开发 算法
协同过滤算法|电影推荐系统|基于用户偏好的电影推荐系统设计与开发
协同过滤算法|电影推荐系统|基于用户偏好的电影推荐系统设计与开发
123 0
|
搜索推荐 算法 前端开发
电影推荐与管理系统Python+Django网页界面+协同过滤推荐算法【计算机毕设项目】
电影推荐与管理系统Python+Django网页界面+协同过滤推荐算法【计算机毕设项目】
162 0
电影推荐与管理系统Python+Django网页界面+协同过滤推荐算法【计算机毕设项目】
|
机器学习/深度学习 搜索推荐 算法
基于协同过滤算法的电影推荐系统设计(二) - 推荐系统介绍(上)
基于协同过滤算法的电影推荐系统设计(二) - 推荐系统介绍(上)
479 0
基于协同过滤算法的电影推荐系统设计(二) - 推荐系统介绍(上)
|
算法 搜索推荐 Python
python协同过滤算法实现电影推荐(附源码)
python协同过滤算法实现电影推荐(附源码)
849 0
python协同过滤算法实现电影推荐(附源码)
|
机器学习/深度学习 搜索推荐 算法
基于协同过滤算法的电影推荐系统设计(二) - ALS算法详解
基于协同过滤算法的电影推荐系统设计(二) - ALS算法详解
377 0
基于协同过滤算法的电影推荐系统设计(二) - ALS算法详解
|
存储 搜索推荐 算法
基于协同过滤算法的电影推荐系统设计(二) - 推荐系统介绍(下)
基于协同过滤算法的电影推荐系统设计(二) - 推荐系统介绍(下)
593 0
基于协同过滤算法的电影推荐系统设计(二) - 推荐系统介绍(下)
|
数据采集 机器学习/深度学习 分布式计算
毕业设计之基于协同过滤算法的电影推荐系统设计(一) - 项目简介
由于本人今年毕业,为完成毕设特地想着实现一个简单的推荐系统设计,思来想去,小电影不就是很好的切入点嘛! 于是诞生该项目,将会一步步带着大家实现一个自己的电影推荐系统.
452 0
下一篇
DataWorks