🦄文章&教程
由系列文章组成的 Flask 学习指南,深入了解 Flask 的内部结构、核心特性和功能,涵盖主题有程序和请求上下文、Werkzeug、会话、安全(防CSRF)、测试、2.0 版本的异步等。
识别和处理 PDF 文件中的表格是件困难的事,PyMuPDF 最新版本 1.23.0 提供了从 PDF 中提取表格的功能!可以将提取内容交给 pandas 处理,可以导出 Excel 和 CSV 格式的文件。
周刊第 16 期分享了 Instagram 在 Python 3.12 引入永生对象的故事,而这里分享的文章深入剖析解释器源码,为我们回答了以下问题:为什么要引入永生对象?它对性能有什么影响?它是如何实现的(如 None 对象和小整数),如何做到兼容旧版本的接口的?
你知道 Python 中的下划线有哪些用法么?这篇文章介绍了:REPL 中的用法、作变量名的前缀和后缀时的四种用法、作为赋值“接收器”的两种用法、新 match-case 语法中的用处、用作频繁调用的函数别名、大额数字中增加可读性。
Asyncio 不仅提供了简单的Socket
接口,还基于它提供了Protocol
&Transport
接口以及更高级的Stream
接口,大大的减轻了开发者进行网络编程的心理负担。文章主要介绍了这几个接口的简单使用以及对应的原理分析。
Streamlit 是一个用于创建和部署 Web 程序的框架,广泛用于机器学习和数据科学领域。这篇教程介绍了它的安装以及常用组件的使用。
7、如何在 FastAPI 应用中使用 Tailwind CSS 和 SQLAlchemy
FastAPI 是一个轻量级框架,通常需要集成其它组件搭配使用。这篇文章介绍了如何将 FastAPI 与 Jinja2 模板引擎、Tailwind CSS 以及 SQLAlchemy 结合,创建出一个好用的开发脚手架。
文章介绍了 Python 堆排序/优先队列、二分查找、有序容器的相关使用,它们有更好的时间复杂度或适用场景,是比暴力搜索和暴力排序更值得采用的解决方案。
我们经常会在注册一些账号后收到一封验证邮件,只有在链接的有效期内点击它才能完成账号注册。这篇教程介绍了如何用 Django 来实现这个功能,这是一个简短而完整的练手项目。
10、探索全球多样性:Pyetho — 用于了解国家及其语言的 Python 库
文章介绍了Pyetho 这个库的基本使用,它主要包含了全球国家及其语言的相关信息,采用 ISO 标准。收录有 195 个国家,我查询了下,中国有 285 种语言。除了国家和语言基本信息外,其它功能包括:查询某种语言的使用人数、查询某种语言在哪些国家使用、查询某种语言的谱系家族、查询所有的语言家族,等等。
Polars 是数据分析领域的新秀,底层是用 Rust 写的,拥有超高性能。这是一篇详细的教程,内容包括:它的 DataFrame、表达式和上下文、惰性 API(LazyFrame)、与外部数据源集成、与 Numpy 和 pandas 的集成,等等。
12、深入学习数据结构与算法:C++、Swift、Python、Java、C#、JavaScript
超长文预警!文章探索了不同编程语言中常见数据结构的实现,使用简洁的动画和图表直观介绍了相关的知识。主要涉及线性数据结构,如数组、动态数组、链表、循环链表、栈、队列、哈希表、集合,等等。数据结构当然离不开算法和时间复杂度,文中也有对应介绍。
🎁Python潮流周刊🎁已免费发布了 18 期,访问下方链接,即可查看全部内容:pythoncat.top/tags/weekly
🐿️项目&资源
1、fastapi-users:开箱即用的 FastAPI 用户管理库
为 FastAPI 添加用户注册与身份验证模块,主要特性有:可扩展的用户模型、注册/登录/重置密码/邮箱验证、OAuth2 登录流程、可定制的数据库后端、支持多种身份验证,等等。(star 3.3K)
在命令行里弹钢琴是种什么体验?!安装这个库后,你就可以用鼠标和键盘来弹钢琴了。
一个比 requests 库更简单、可配置、功能丰富的库,使用 gevent 实现高性能并发,支持 HTTP/2,JSON 序列化比标准库快 10 倍,代码使用类型提示,100% 线程安全。
4、wisdomInterrogatory:智海-录问法律大模型
由浙江大学、阿里巴巴达摩院以及华院计算共同设计研发的法律大模型,以“普法共享和司法效能提升”为目标。模型基座是 Baichuan-7B,预训练的数据包括法律文书、司法案例以及法律问答数据,共 40 G。
5、awesome-systematic-trading:一个精选的系统化交易列表
系统化交易/量化交易是依据规则和算法进行自动化交易的策略,这个仓库收录了一系列资源:库、软件、策略、书籍、博客、论文、视频,等等。(star 1.1K)
Qwen-VL 是阿里云研发的大规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。支持多语言、多图交错对话。评测结果显示,Qwen-VL 在多个 VL 任务上相比目前 SOTA 的 Generalist Models 都有明显优势。
查询和总结你的文档,或者与本地私有的 GPT LLM 聊天。支持大部分文档,支持 LLaMa2、Falcon、Vicuna、AutoGPTQ、LORA 等,支持 Linux、Docker、MAC 和 Windows。(star 7.2K)
8、refact:开源编码助手,支持自动补全、代码重构、代码分析
Copilot 的开源替代方案,可自托管或使用云服务。支持 starcoder、starchat、llama2、wizardlm 等开源模型,支持代码补全、重构、解释、分析、优化与修复错误等功能。
dify 是 Do It For You 的简写,是一个易用的 LLMOps 平台,支持快速创建出自己的 AI 应用。核心能力:通过 Langchain 支持主流的大语言模型(包括讯飞星火、文心一言、通义千问)、可视化编排 Prompt、支持添加数据集、支持插件、支持数据标注与改进。(star 8K)
一个低代码开发框架,与 Plotly Dash、Streamlit 和 Shiny 相似,支持快速创建仪表板应用。后端使用 FastAPI,前端是一个基于 React 的 UI。