YoloV8 +可视化界面+GUI+交互式界面目标检测与跟踪

简介: YoloV8 +可视化界面+GUI+交互式界面目标检测与跟踪

YoloV8 可视化界面 GUI

  • 本项目旨在基于 YoloV8 目标检测算法开发一个直观的可视化界面,使用户能够轻松上传图像或视频,并对其进行目标检测。
  • 通过图形用户界面,用户可以方便地调整检测参数、查看检测结果,并将结果保存或导出。同时,该界面还将提供实时目标检测功能,让用户能够在视频流中实时观察目标的检测情况。
  • 这个项目将结合 YoloV8 强大的检测能力和直观的用户交互,为用户提供一种全新的目标检测体验。


如何运行

  • python>=3.8
  • pip install ultralytics==8.0.48
  • pip install pyside6==6.4.2
- python main.py


运行上述指令,则可以看到介入下界面!

!!必须安装相应版本的库
!!否则,将出现以下错误:not enough values to unpack (expected 5, got 4)
注意事项
ultralytics 遵循 GPL-3.0 协议,如需商业使用,需获得其许可。


建议

资源文件为 resources.qrc,如果您修改了默认图标,需要使用 pyside6-rcc resoures.qrc >

ui/resources_rc.py 命令来重新生成 .py 文件。

  • 如果您希望使用自己的模型,您需要使用 ultralytics 先训练 yolov8/5 模型,然后将训练好的 .pt 文件放入

models 文件夹中。

  • 软件中仍然存在一些 bug,我会在有时间的情况下持续优化并增加一些更有趣的功能。
  • 如果您勾选保存结果,结果将保存在 ./run 路径下。
  • UI 设计文件为 home.ui,如果您对其进行修改,需要使用 pyside6-uic home.ui > ui/home.py

命令来重新生成 .py 文件。

  • 资源文件为 resources.qrc,如果您修改了默认图标,需要使用 pyside6-rcc resoures.qrc >

ui/resources_rc.py 命令来重新生成 .py 文件。


544e24f5221e42ef97904fc156223e6d.png


更改自己想要的界面,你可以按照以下步骤进行操作:

  • 修改 UI 设计文件: 打开 UI 设计文件(如 .ui 文件),使用 PySide6 的 pyside6-uic 工具将其转换为

Python 代码。然后在生成的 Python 代码中进行修改,包括布局、组件样式、交互逻辑等。

  • 修改资源文件: 如果界面中使用了自定义图标、图片等资源,你需要编辑资源文件(如 .qrc 文件),将新的资源添加进去,并使用

pyside6-rcc 工具将其编译成 Python 代码。

  • 重新编译界面: 保存所有修改后的文件,并重新编译生成的 Python 代码。确保所有文件路径和引用都正确。
  • 运行程序: 运行程序,查看界面效果,并进行调试和优化。


主要代码

class YoloPredictor(BasePredictor, QObject):
    yolo2main_pre_img = Signal(np.ndarray)   # raw image signal
    yolo2main_res_img = Signal(np.ndarray)   # test result signal
    yolo2main_status_msg = Signal(str)       # Detecting/pausing/stopping/testing complete/error reporting signal
    yolo2main_fps = Signal(str)              # fps
    yolo2main_labels = Signal(dict)          # Detected target results (number of each category)
    yolo2main_progress = Signal(int)         # Completeness
    yolo2main_class_num = Signal(int)        # Number of categories detected
    yolo2main_target_num = Signal(int)       # Targets detected

    def __init__(self, cfg=DEFAULT_CFG, overrides=None): 
        super(YoloPredictor, self).__init__() 
        QObject.__init__(self)

        self.args = get_cfg(cfg, overrides)
        project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task
        name = f'{self.args.mode}'
        self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok)
        self.done_warmup = False
        if self.args.show:
            self.args.show = check_imshow(warn=True)

        # GUI args
        self.used_model_name = None      # The detection model name to use
        self.new_model_name = None       # Models that change in real time
        self.source = ''                 # input source
        self.stop_dtc = False            # Termination detection
        self.continue_dtc = True         # pause   
        self.save_res = False            # Save test results
        self.save_txt = False            # save label(txt) file
        self.iou_thres = 0.45            # iou
        self.conf_thres = 0.25           # conf
        self.speed_thres = 10            # delay, ms
        self.labels_dict = {}            # return a dictionary of results
        self.progress_value = 0          # progress bar
    

        # Usable if setup is done
        self.model = None
        self.data = self.args.data  # data_dict
        self.imgsz = None
        self.device = None
        self.dataset = None
        self.vid_path, self.vid_writer = None, None
        self.annotator = None
        self.data_path = None
        self.source_type = None
        self.batch = None
        self.callbacks = defaultdict(list, callbacks.default_callbacks)  # add callbacks
        callbacks.add_integration_callbacks(self)

    # main for detect
    @smart_inference_mode()
    def run(self):
        try:
            if self.args.verbose:
                LOGGER.info('')

            # set model    
            self.yolo2main_status_msg.emit('Loding Model...')
            if not self.model:
                self.setup_model(self.new_model_name)
                self.used_model_name = self.new_model_name

            # set source
            self.setup_source(self.source if self.source is not None else self.args.source)

            # Check save path/label
            if self.save_res or self.save_txt:
                (self.save_dir / 'labels' if self.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)

            # warmup model
            if not self.done_warmup:
                self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz))
                self.done_warmup = True

            self.seen, self.windows, self.dt, self.batch = 0, [], (ops.Profile(), ops.Profile(), ops.Profile()), None

            # start detection
            # for batch in self.dataset:


            count = 0                       # run location frame
            start_time = time.time()        # used to calculate the frame rate
            batch = iter(self.dataset)
            while True:
                # Termination detection
                if self.stop_dtc:
                    if isinstance(self.vid_writer[-1], cv2.VideoWriter):
                        self.vid_writer[-1].release()  # release final video writer
                    self.yolo2main_status_msg.emit('Detection terminated!')
                    break
                
                # Change the model midway
                if self.used_model_name != self.new_model_name:  
                    # self.yolo2main_status_msg.emit('Change Model...')
                    self.setup_model(self.new_model_name)
                    self.used_model_name = self.new_model_name
                
                # pause switch
                if self.continue_dtc:
                    # time.sleep(0.001)
                    self.yolo2main_status_msg.emit('Detecting...')
                    batch = next(self.dataset)  # next data

                    self.batch = batch
                    path, im, im0s, vid_cap, s = batch
                    visualize = increment_path(self.save_dir / Path(path).stem, mkdir=True) if self.args.visualize else False

                    # Calculation completion and frame rate (to be optimized)
                    count += 1              # frame count +1
                    if vid_cap:
                        all_count = vid_cap.get(cv2.CAP_PROP_FRAME_COUNT)   # total frames
                    else:
                        all_count = 1
                    self.progress_value = int(count/all_count*1000)         # progress bar(0~1000)
                    if count % 5 == 0 and count >= 5:                     # Calculate the frame rate every 5 frames
相关文章
|
机器学习/深度学习 计算机视觉 网络架构
改进YOLOv8:添加CBAM注意力机制(涨点明显)
改进YOLOv8:添加CBAM注意力机制(涨点明显)
7597 1
|
并行计算
最新YOLOv8(2023年8月版本)安装配置!一条龙傻瓜式安装,遇到问题评论区提问
最近需要使用YOLOv8,百度了一下现在网上大多数教程都是比较早期的教程,很多文件已经大不相同,于是我根据官方readme文档,总结了一套安装方法,只需要按照本教程,复制每一段代码,按照教程配置好相应文件即可直接使用。
9108 2
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
20833 59
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
机器学习/深度学习 并行计算 计算机视觉
YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)
YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)
11202 1
YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)
|
XML 机器学习/深度学习 数据格式
YOLOv8训练自己的数据集+常用传参说明
YOLOv8训练自己的数据集+常用传参说明
21128 3
|
机器学习/深度学习 编解码 Java
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
《YOLO11目标检测创新改进与实战案例》专栏已更新100+篇文章,涵盖注意力机制、卷积优化、检测头创新、损失与IOU优化、轻量级网络设计等多方面内容。每周更新3-10篇,提供详细代码和实战案例,帮助您掌握最新研究和实用技巧。[专栏链接](https://blog.csdn.net/shangyanaf/category_12810477.html)
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
19863 0
|
XML 数据格式 Python
将xml标签转换为txt(voc格式转换为yolo方便进行训练)
该文章提供了一个Python脚本,用于将VOC格式的XML标签文件转换为YOLO训练所需的TXT格式,包括修改数据集类别、输入图像与标注文件夹地址、转换过程和结果展示。
将xml标签转换为txt(voc格式转换为yolo方便进行训练)
|
机器学习/深度学习 人工智能 前端开发
AI计算机视觉笔记三:WEB端部署YOLOv5
本文档介绍了如何将YOLOv5目标检测模型部署到Web端的方法,包括基于Flask和Streamlit两种实现方案。首先创建Python虚拟环境并安装必要的依赖库。接着详细展示了Flask方案下的前端HTML页面与后端Python逻辑代码,该方案利用Flask框架搭建服务器,处理实时视频流,并显示检测结果。随后介绍了Streamlit方案,该方案更简洁直观,适合快速开发交互式的机器学习应用。通过`streamlit run`命令即可启动应用,支持图像、视频及实时摄像头的目标检测演示。两种部署方式各有优势,Flask灵活性高,适用于复杂项目;而Streamlit则易于上手,便于快速原型设计。
1642 0
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
2014 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
下一篇
oss云网关配置