基于深度学习的停车位关键点检测系统(代码+原理)

简介: 基于深度学习的停车位关键点检测系统(代码+原理)

摘要:

DMPR-PS是一种基于深度学习的停车位检测系统,旨在实时监测和识别停车场中的停车位。该系统利用图像处理和分析技术,通过摄像头获取停车场的实时图像,并自动检测停车位的位置和状态。本文详细介绍了DMPR-PS系统的算法原理、创新点和实验结果,并对其性能进行了评估。


算法创新:

DMPR-PS系统的算法创新主要体现在以下几个方面:

  1. 深度学习模型:DMPR-PS系统采用了深度学习模型来进行停车位的检测。通过大规模数据集的训练,该模型可以自动学习停车位的特征,并准确地进行检测和分类。

2.多尺度检测:为了应对不同大小的停车位,DMPR-PS系统使用了多尺度检测策略。通过在不同尺度下进行检测,可以提高系统对各种大小停车位的检测准确率。


3.实时性能:DMPR-PS系统具有较高的实时性能。它能够快速处理实时视频流,并在短时间内完成停车位的检测和识别,满足实时监测的需求。

4c7046907c5d9b36aaa7e721f4c13d18_17d4dd3255d04f07baee30a42b220208.png

实验结果与结论:

通过对多个停车场场景的实验测试,DMPR-PS系统展现了良好的性能。实验结果表明,该系统在检测准确率和实时性能方面都具有较高的水平。


代码运行

要求:

python版本3.6
pytorch版本1.4+

其他要求:

pip install -r requirements.txt
gcn-parking-slot

预训练模型

可以通过以下链接下载两个预训练模型。

链接  代码  描述
Model0  bc0a  使用ps2.0子集进行训练,如[1]所述。
Model1  pgig  使用完整的ps2.0数据集进行训练。

准备数据

可以在此处找到原始的ps2.0数据和标签。提取并组织如下:

├── datasets
│   └── parking_slot
│       ├── annotations
│       ├── ps_json_label 
│       ├── testing
│       └── training

训练和测试

将当前目录导出到PYTHONPATH:

export PYTHONPATH=`pwd`

演示

python3 tools/demo.py -c config/ps_gat.yaml -m cache/ps_gat/100/models/checkpoint_epoch_200.pth

训练

python3 tools/train.py -c config/ps_gat.yaml
• 1


测试

python3 tools/test.py -c config/ps_gat.yaml -m cache/ps_gat/100/models/checkpoint_epoch_200.pth


代码

import cv2
import time
import torch
import pprint
import numpy as np
from pathlib import Path

from psdet.utils.config import get_config
from psdet.utils.common import get_logger
from psdet.models.builder import build_model


def draw_parking_slot(image, pred_dicts):
    slots_pred = pred_dicts['slots_pred']

    width = 512
    height = 512
    VSLOT_MIN_DIST = 0.044771278151623496
    VSLOT_MAX_DIST = 0.1099427457599304
    HSLOT_MIN_DIST = 0.15057789144568634
    HSLOT_MAX_DIST = 0.44449496544202816

    SHORT_SEPARATOR_LENGTH = 0.199519231
    LONG_SEPARATOR_LENGTH = 0.46875
    junctions = []
    for j in range(len(slots_pred[0])):
        position = slots_pred[0][j][1]
        p0_x = width * position[0] - 0.5
        p0_y = height * position[1] - 0.5
        p1_x = width * position[2] - 0.5
        p1_y = height * position[3] - 0.5
        vec = np.array([p1_x - p0_x, p1_y - p0_y])
        vec = vec / np.linalg.norm(vec)
        distance =( position[0] - position[2] )**2 + ( position[1] - position[3] )**2 
        
        if VSLOT_MIN_DIST <= distance <= VSLOT_MAX_DIST:
            separating_length = LONG_SEPARATOR_LENGTH
        else:
            separating_length = SHORT_SEPARATOR_LENGTH
        
        p2_x = p0_x + height * separating_length * vec[1]
        p2_y = p0_y - width * separating_length * vec[0]
        p3_x = p1_x + height * separating_length * vec[1]
        p3_y = p1_y - width * separating_length * vec[0]
        p0_x = int(round(p0_x))
        p0_y = int(round(p0_y))
        p1_x = int(round(p1_x))
        p1_y = int(round(p1_y))
        p2_x = int(round(p2_x))
        p2_y = int(round(p2_y))
        p3_x = int(round(p3_x))
        p3_y = int(round(p3_y))
        cv2.line(image, (p0_x, p0_y), (p1_x, p1_y), (255, 0, 0), 2)
        cv2.line(image, (p0_x, p0_y), (p2_x, p2_y), (255, 0, 0), 2)
        cv2.line(image, (p1_x, p1_y), (p3_x, p3_y), (255, 0, 0), 2)

        #cv2.circle(image, (p0_x, p0_y), 3,  (0, 0, 255), 4)
        junctions.append((p0_x, p0_y))
        junctions.append((p1_x, p1_y))
    for junction in junctions:
        cv2.circle(image, junction, 3,  (0, 0, 255), 4)
    
    return image
    
def main():

    cfg = get_config()
    logger = get_logger(cfg.log_dir, cfg.tag)
    logger.info(pprint.pformat(cfg))

    model = build_model(cfg.model)
    logger.info(model)
    
    image_dir = Path(cfg.data_root) / 'testing' / 'outdoor-normal daylight'
    display = False

    # load checkpoint
    model.load_params_from_file(filename=cfg.ckpt, logger=logger, to_cpu=False)
    model.cuda()
    model.eval()
    
    if display:
        car = cv2.imread('images/car.png')
        car = cv2.resize(car, (512, 512))

    with torch.no_grad():

        for img_path in image_dir.glob('*.jpg'):
            img_name = img_path.stem
            
            data_dict = {} 
            image  = cv2.imread(str(img_path))
            image0 = cv2.resize(image, (512, 512))
            image = image0/255.

            data_dict['image'] = torch.from_numpy(image).float().permute(2, 0, 1).unsqueeze(0).cuda()

            start_time = time.time()
            pred_dicts, ret_dict = model(data_dict)
            sec_per_example = (time.time() - start_time)
            print('Info speed: %.4f second per example.' % sec_per_example)

            if display:
                image = draw_parking_slot(image0, pred_dicts)
                image[145:365, 210:300] = 0
                image += car
                cv2.imshow('image',image.astype(np.uint8))
                cv2.waitKey(50)
                
                save_dir = Path(cfg.output_dir) / 'predictions'
                save_dir.mkdir(parents=True, exist_ok=True)
                save_path = save_dir / ('%s.jpg' % img_name)
                cv2.imwrite(str(save_path), image)
    if display:
        cv2.destroyAllWindows()

if __name__ == '__main__':
    main()


结论

DMPR-PS系统是一种基于深度学习的停车位检测系统,通过创新的算法设计和实时性能优化,可以有效地监测和识别停车场中的停车位。该系统在提高停车场资源利用率和管理效率方面具有重要的应用价值。

相关文章
|
2月前
|
机器学习/深度学习 城市大脑 安全
基于深度学习的客流量预测系统
本文分析了疫情后旅游市场复苏带动地铁客流增长的背景,探讨了客流预测对交通运营的重要性,综述了基于多源数据与深度学习模型(如LSTM、STGCN)的研究进展,并介绍了CNN与RNN在人流预测中的技术原理及系统实现路径。
|
2月前
|
机器学习/深度学习 人工智能 文字识别
中药材图像识别数据集(100类,9200张)|适用于YOLO系列深度学习分类检测任务
本数据集包含9200张中药材图像,覆盖100种常见品类,已标注并划分为训练集与验证集,支持YOLO等深度学习模型。适用于中药分类、目标检测、AI辅助识别及教学应用,助力中医药智能化发展。
|
2月前
|
机器学习/深度学习 传感器 算法
基于yolo8的深度学习室内火灾监测识别系统
本研究基于YOLO8算法构建室内火灾监测系统,利用计算机视觉技术实现火焰与烟雾的实时识别。相比传统传感器,该系统响应更快、精度更高,可有效提升火灾初期预警能力,保障生命财产安全,具有重要的应用价值与推广前景。
|
3月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
210 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
3月前
|
机器学习/深度学习 数据采集 编解码
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
187 1
|
3月前
|
机器学习/深度学习 数据采集 算法
基于mediapipe深度学习的运动人体姿态提取系统python源码
本内容介绍了基于Mediapipe的人体姿态提取算法。包含算法运行效果图、软件版本说明、核心代码及详细理论解析。Mediapipe通过预训练模型检测人体关键点,并利用部分亲和场(PAFs)构建姿态骨架,具有模块化架构,支持高效灵活的数据处理流程。
|
3月前
|
机器学习/深度学习 算法 vr&ar
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
103 0
|
11月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
445 22
|
8月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
1102 64
计算机视觉五大技术——深度学习在图像处理中的应用