路径规划最全综述+代码+可视化绘图(Dijkstra算法+A*算法+RRT算法等)-2

简介: 路径规划最全综述+代码+可视化绘图(Dijkstra算法+A*算法+RRT算法等)-2

路径规划最全综述+代码+可视化绘图(Dijkstra算法+A*算法+RRT算法等)-1

https://developer.aliyun.com/article/1446465


基于采样的规划则是利用随机采样的方法来生成路径

其中最常见的算法是

  • RRT、
  • RRT-Connect、
  • Extended-RRT、
  • Dynamic-RRT、
  • RRT*、
  • Informed RRT*、
  • RRT* Smart、
  • Anytime RRT*、
  • Closed-Loop RRT*、
  • Spline-RRT*、
  • Fast Marching Trees (FMT*) 和
  • Batch Informed Trees (BIT*)


等算法。这些算法适用于复杂环境中的路径规划,如机器人导航、无人驾驶和物流配送等领域。

优缺点
  1. RRT (Rapidly-Exploring Random Trees)
    优点:适用于高维空间;能够有效处理复杂环境;运算速度较快。


缺点:无法保证找到最优解;生成的路径可能不是最短路径。

  1. RRT-Connect
    优点:可以保证找到可行路径;适用于多机器人路径规划问题。

缺点:路径质量可能较差;可能收敛速度较慢。

  1. Extended-RRT
    优点:能够处理非完整动力学系统;适用于多机器人协同规划。


缺点:路径质量可能较差;运算速度较慢。

  1. Dynamic-RRT
    优点:能够处理动态环境中的路径规划问题;适用于移动机器人和无人机等领域。


缺点:运算速度较慢;路径质量可能较差。


5.RRT* (Rapidly-Exploring Random Trees Star)

优点:能够找到最优路径;路径质量较高。

缺点:运算速度较慢;可能需要大量的存储空间。


6.Informed RRT*

优点:结合了启发式信息,能够加速搜索过程;能够找到近似最优解。


缺点:运算速度较慢;路径质量可能较差。

  1. RRT* Smart
    优点:通过智能采样策略提高搜索效率;能够找到最优路径。

缺点:运算速度较慢;路径质量可能较差。

  1. Anytime RRT*
    优点:可以在任何时候停止搜索并返回当前的最佳路径;能够找到近似最优解。

缺点:路径质量可能较差;需要进行实时计算。


9.Closed-Loop RRT*

优点:能够处理非完整动力学系统和约束条件;路径质量较高。

缺点:运算速度较慢;可能需要大量的存储空间。

# --------Visualization specialized for dynamic RRT
    def visualization(self):
        if self.ind % 100 == 0 or self.done:
            V = np.array(self.V)
            Path = np.array(self.Path)
            start = self.env.start
            goal = self.env.goal
            # edges = []
            # for i in self.Parent:
            #     edges.append([i, self.Parent[i]])
            edges = np.array([list(i) for i in self.Edge])
            ax = plt.subplot(111, projection='3d')
            # ax.view_init(elev=0.+ 0.03*initparams.ind/(2*np.pi), azim=90 + 0.03*initparams.ind/(2*np.pi))
            # ax.view_init(elev=0., azim=90.)
            ax.view_init(elev=90., azim=0.)
            ax.clear()
            # drawing objects
            draw_Spheres(ax, self.env.balls)
            draw_block_list(ax, self.env.blocks)
            if self.env.OBB is not None:
                draw_obb(ax, self.env.OBB)
            draw_block_list(ax, np.array([self.env.boundary]), alpha=0)
            draw_line(ax, edges, visibility=0.75, color='g')
            draw_line(ax, Path, color='r')
            # if len(V) > 0:
            #     ax.scatter3D(V[:, 0], V[:, 1], V[:, 2], s=2, color='g', )
            ax.plot(start[0:1], start[1:2], start[2:], 'go', markersize=7, markeredgecolor='k')
            ax.plot(goal[0:1], goal[1:2], goal[2:], 'ro', markersize=7, markeredgecolor='k')
            # adjust the aspect ratio
            set_axes_equal(ax)
            make_transparent(ax)
            # plt.xlabel('s')
            # plt.ylabel('y')
            ax.set_axis_off()
            plt.pause(0.0001)


if __name__ == '__main__':
    rrt = dynamic_rrt_3D()
    rrt.Main()


  1. Spline-RRT*
    优点:通过样条插值提高路径质量;能够找到平滑的路径。

缺点:运算速度较慢;可能需要大量的存储空间。

  1. Fast Marching Trees (FMT*)
    优点:运算速度快;能够找到最短路径。


缺点:路径质量可能较差;在高维空间中效果可能不理想。

  1. Batch Informed Trees (BIT*)
    优点:通过批量采样提高搜索效率;能够找到最优路径。

缺点:运算速度较慢;可能需要大量的存储空间。

2. 常见的路径规划算法

2.1 Dijkstra算法

Dijkstra算法是一种用于图中寻找最短路径的算法,它可以应用于有向图或无向图。该算法通过不断更新起点到各个顶点的最短路径来找到最终的最短路径。Dijkstra算法的时间复杂度为O(V^2),其中V为顶点数,但可以通过优先队列实现最小堆来优化时间复杂度。

2.2 A*算法

A算法是一种启发式搜索算法,它结合了Dijkstra算法和贪婪最佳优先搜索算法的优点。A算法通过估计从当前节点到目标节点的代价来动态调整搜索方向,从而更快地找到最佳路径。A*算法在很多实际应用中表现出色,并且具有较高的效率和准确性。

2.3 RRT算法

RRT(Rapidly-exploring Random Tree)算法是一种适用于高维空间的路径规划算法,它通过随机采样和不断扩展树形结构来搜索路径。RRT算法适用于具有复杂空间结构的环境,并且在机器人导航和运动规划中有着广泛的应用。


3. 路径规划在无人驾驶中的应用

无人驾驶技术作为当今人工智能领域的热点之一,路径规划在其中扮演着至关重要的角色。无人驾驶车辆需要通过传感器获取周围环境信息,并利用路径规划算法来决定车辆的行驶路线,以确保安全和高效地到达目的地。由于道路交通环境的复杂性,路径规划算法需要考虑到实时交通状况、障碍物避让、交通规则等因素,因此对路径规划算法的要求也更加严格。


4. 路径规划在物流配送中的应用

随着电商行业的快速发展,物流配送成为了一个备受关注的领域。路径规划在物流配送中的应用不仅可以提高配送效率,还可以降低成本。通过合理的路径规划,配送车辆可以在最短的时间内覆盖更多的配送点,从而提高送货效率。同时,路径规划算法还需要考虑到配送点的时效性、交通拥堵情况等因素,以提供最优的配送方案。


0f11dd35d696452b8429164bb4304859.gif


5. 路径规划的挑战与未来发展

随着人工智能和计算机技术的不断发展,路径规划领域也面临着一些挑战。例如,在复杂的城市环境中,路径规划需要考虑到人行道、交通信号灯、行人车辆等多种因素,这对算法的精度和实时性提出了更高的要求。未来,路径规划技术可能会结合更多的传感器数据和深度学习技术,以提高路径规划的效率和准确性。


结语

路径规划作为人工智能领域中的重要应用之一,对于实现智能化的交通系统和物流配送具有重要意义。随着技术的不断进步,路径规划算法将会在更多的领域发挥作用,为人们的生活带来便利和安全。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】TF-IDF算法在人工智能方面的应用,附带代码
TF-IDF算法在人工智能领域,特别是自然语言处理(NLP)和信息检索中,被广泛用于特征提取和文本表示。以下是一个使用Python的scikit-learn库实现TF-IDF算法的简单示例,并展示如何将其应用于文本数据。
215 65
|
25天前
|
机器学习/深度学习 存储 算法
经典算法代码
这段代码展示了多个经典算法,包括:穷举法解决“百钱买百鸡”问题;递推法计算“猴子吃桃”问题;迭代法求解斐波那契数列及折纸高度超越珠峰的问题。同时,还提供了希尔排序算法实现及披萨票务订购系统和汉诺塔问题的链表存储解决方案。每部分通过具体案例解释了算法的应用场景与实现方法。
22 3
|
2月前
|
机器学习/深度学习 人工智能 算法
【人工智能】传统语音识别算法概述,应用场景,项目实践及案例分析,附带代码示例
传统语音识别算法是将语音信号转化为文本形式的技术,它主要基于模式识别理论和数学统计学方法。以下是传统语音识别算法的基本概述
56 2
|
2月前
|
机器学习/深度学习 算法 Java
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
这篇文章介绍了基于贪婪技术思想的Prim算法和Dijkstra算法,包括它们的伪代码描述、Java源代码实现、时间效率分析,并展示了算法的测试用例结果,使读者对贪婪技术及其应用有了更深入的理解。
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
|
2月前
|
自然语言处理 算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
44 0
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
|
2月前
|
人工智能 算法 数据可视化
DBSCAN密度聚类算法(理论+图解+python代码)
DBSCAN密度聚类算法(理论+图解+python代码)
|
2月前
|
数据采集 搜索推荐 算法
【高手进阶】Java排序算法:从零到精通——揭秘冒泡、快速、归并排序的原理与实战应用,让你的代码效率飙升!
【8月更文挑战第21天】Java排序算法是编程基础的重要部分,在算法设计与分析及实际开发中不可或缺。本文介绍内部排序算法,包括简单的冒泡排序及其逐步优化至高效的快速排序和稳定的归并排序,并提供了每种算法的Java实现示例。此外,还探讨了排序算法在电子商务、搜索引擎和数据分析等领域的广泛应用,帮助读者更好地理解和应用这些算法。
24 0
|
2月前
|
算法 定位技术
路径规划算法 - 求解最短路径 - A*(A-Star)算法
路径规划算法 - 求解最短路径 - A*(A-Star)算法
40 0
|
2月前
|
算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
44 0
|
2月前
|
搜索推荐 算法 Java
插入排序算法(Java代码实现)
这篇文章通过Java代码示例详细解释了插入排序算法的实现过程,包括算法的基本思想、核心代码、辅助函数以及测试结果,展示了如何通过插入排序对数组进行升序排列。
下一篇
无影云桌面