YOLOv8界面-目标检测+语义分割+追踪+姿态识别(姿态估计)+界面DeepSort/ByteTrack-PyQt-GUI

简介: YOLOv8界面-目标检测+语义分割+追踪+姿态识别(姿态估计)+界面DeepSort/ByteTrack-PyQt-GUI

YOLOv8-DeepSort/ByteTrack-PyQt-GUI:全面解决方案,涵盖目标检测、跟踪和人体姿态估计

YOLOv8-DeepSort/ByteTrack-PyQt-GUI是一个多功能图形用户界面,旨在充分发挥YOLOv8在目标检测/跟踪和人体姿态估计/跟踪方面的能力,与图像、视频或实时摄像头流进行无缝集成。支持该应用的Python脚本使用ONNX格式的YOLOv8模型,确保各种人工智能(AI)任务的高效和准确执行。

d2899219fab840d9b7cf4179f43d5bce.png

全面的AI任务

该应用支持一系列AI任务,包括:

  • 目标检测: 使用YOLOv8模型在图像或视频帧中准确检测和识别对象。
  • 姿态估计: 估计和跟踪人体姿态,提供有关身体运动和配置的见解。
  • 分割: 利用YOLOv8进行分割任务,区分并划定图像中的特定区域。

多样的模型支持

YOLOv8-DeepSort/ByteTrack-PyQt-GUI支持多个YOLOv8变体,允许用户选择最适合其需求的模型。支持的YOLOv8模型包括:

  • YOLOv8n
  • YOLOv8s
  • YOLOv8m
  • YOLOv8l
  • YOLOv8x

先进的跟踪算法

为增强跟踪功能,该应用集成了两个强大的跟踪器:

  • DeepSort: 利用DeepSort进行强大且准确的对象跟踪,提供在连续帧之间平滑跟踪的功能。
  • ByteTrack: 充分发挥ByteTrack的先进跟踪能力,提供高精度的跟踪性能。

灵活的输入源

YOLOv8-DeepSort/ByteTrack-PyQt-GUI适应各种输入源,使其适用于不同的场景:


  • 本地文件: 处理存储在系统本地的图像或视频。
  • 摄像头: 直接捕获和分析连接摄像头的实时视频流。
  • RTSP-流: 从RTSP源流式传输视频输入,增强应用的灵活性。


安装说明

要设置YOLOv8-DeepSort/ByteTrack-PyQt-GUI,请按照以下简单的安装步骤进行:

使用Pip:

pip install -r requirements.txt

使用Conda:

conda env create -f environment.yml
# 激活Conda环境
conda activate yolov8_gui

模型权重下载

在运行应用程序之前,请通过执行以下命令下载所需的模型权重:

python download_weights.py

下载的模型文件将保存在**weights/**文件夹中。

入门

使用以下命令运行应用程序:

python main.py

体验YOLOv8-DeepSort/ByteTrack-PyQt-GUI的全面功能,将目标检测、跟踪和人体姿态估计无缝结合,适用于各种应用场景。通过其多功能性和高度灵活的输入源支持,该应用成为处理视觉任务的理想选择,为用户提供了强大的工具,帮助他们在图像和视频中发现更多的信息。


代码获取

call me qq:1309399183
相关文章
|
机器学习/深度学习 监控 算法
yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计(代码+教程)
yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计(代码+教程)
|
算法
YOLOv8官方支持多目标跟踪 | ByteTrack、BoT-SORT都已加入YOLOv8官方
YOLOv8官方支持多目标跟踪 | ByteTrack、BoT-SORT都已加入YOLOv8官方
1808 0
|
并行计算
最新YOLOv8(2023年8月版本)安装配置!一条龙傻瓜式安装,遇到问题评论区提问
最近需要使用YOLOv8,百度了一下现在网上大多数教程都是比较早期的教程,很多文件已经大不相同,于是我根据官方readme文档,总结了一套安装方法,只需要按照本教程,复制每一段代码,按照教程配置好相应文件即可直接使用。
9108 2
|
人工智能 计算机视觉 Python
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(1)
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(1)
|
数据处理 计算机视觉 Python
【目标检测】指定划分COCO数据集训练(车类,行人类,狗类...)
【目标检测】指定划分COCO数据集训练(车类,行人类,狗类...)
5725 0
|
人工智能 监控 算法
AI计算机视觉笔记二十 八:基于YOLOv8实例分割的DeepSORT多目标跟踪
本文介绍了YOLOv8实例分割与DeepSORT视觉跟踪算法的结合应用,通过YOLOv8进行目标检测分割,并利用DeepSORT实现特征跟踪,在复杂环境中保持目标跟踪的准确性与稳定性。该技术广泛应用于安全监控、无人驾驶等领域。文章提供了环境搭建、代码下载及测试步骤,并附有详细代码示例。
1501 1
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
20833 59
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
机器学习/深度学习 人工智能 计算机视觉
YOLOv11 正式发布!你需要知道什么? 另附:YOLOv8 与YOLOv11 各模型性能比较
YOLOv11是Ultralytics团队推出的最新版本,相比YOLOv10带来了多项改进。主要特点包括:模型架构优化、GPU训练加速、速度提升、参数减少以及更强的适应性和更多任务支持。YOLOv11支持目标检测、图像分割、姿态估计、旋转边界框和图像分类等多种任务,并提供不同尺寸的模型版本,以满足不同应用场景的需求。
YOLOv11 正式发布!你需要知道什么? 另附:YOLOv8 与YOLOv11 各模型性能比较
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
2893 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
机器学习/深度学习 人工智能 算法
基于YOLOv8的火焰烟雾实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的火焰烟雾实时检测系统,使用6744张图片训练有效模型,开发了带GUI界面的系统,支持图片、视频和摄像头实时检测,具备模型权重导入、检测置信度调节等功能,并提供项目完整代码和数据集。
2102 1
基于YOLOv8的火焰烟雾实时检测系统【训练和系统源码+Pyside6+数据集+包运行】