霍夫变换车道线识别-车牌字符识别代码(matlab仿真与图像处理系列第5期)

简介: 霍夫变换车道线识别-车牌字符识别代码(matlab仿真与图像处理系列第5期)

1.车道线识别

当使用霍夫变换进行车道线识别时,可以按照以下步骤来编写 MATLAB 代码:

  1. 读入图像:使用imread函数读取包含车道线的图像。
image = imread('lane_image.jpg');

15131860dd2763f4ebe4608c746ff58a_3da04dc735e0426aa930b607dfe6f7f2.png

  1. 图像预处理:为了减少噪音和突出车道线,可以对图像进行预处理。通常,可以采用以下步骤:
  • 将图像转换为灰度图像:使用rgb2gray函数将彩色图像转换为灰度图像。
  • 应用高斯滤波:使用imgaussfilt函数对灰度图像进行高斯平滑处理。

dc2ac673e263835e592d0ef5c203ea94_e0bb8149c2a545fdbe5a6a6970f2b5c3.png

grayImage = rgb2gray(image);
filteredImage = imgaussfilt(grayImage, 3);
  1. 边缘检测:使用Canny边缘检测算法来检测图像中的边缘。
cannyImage = edge(filteredImage, 'Canny');


  1. 霍夫变换:使用hough函数进行霍夫变换,并获取直线参数。
[H, theta, rho] = hough(cannyImage);


  1. 获取车道线:通过设置合适的阈值来选取最显著的直线,代表车道线。
peaks = houghpeaks(H, 10, 'threshold', ceil(0.3*max(H(:))));
lines = houghlines(cannyImage, theta, rho, peaks, 'FillGap', 50, 'MinLength', 100);


  1. 绘制车道线:使用line函数将检测到的直线绘制在原始图像上。
imshow(image);
hold on;

for k = 1:length(lines)
    endpoints = [lines(k).point1; lines(k).point2];
    plot(endpoints(:,1), endpoints(:,2), 'LineWidth', 2, 'Color', 'r');
end

hold off;


以上是一个基本的车道线识别代码示例。


2.车牌识别

车牌字符识别是一个复杂的任务,涉及到图像处理和模式识别等技术。以下是一个简单的基于 MATLAB 的车牌字符识别代码示例:


  1. 读取图像:使用imread函数读取包含车牌的图像。
image = imread('license_plate.jpg');


  1. 图像预处理:为了增强字符的特征并减少噪音,可以进行图像预处理。这里介绍两个常用的预处理步骤:
  • 灰度化:使用rgb2gray函数将彩色图像转换为灰度图像。
  • 二值化:使用阈值方法(如Otsu或自适应阈值)将灰度图像转换为二值图像。
grayImage = rgb2gray(image);
binaryImage = imbinarize(grayImage);


  1. 字符分割:根据车牌上字符的几何特征进行字符分割。常见的方法包括基于连通性、投影法或基于神经网络的方法。
% 这里使用一个简单的投影法示例
projection = sum(binaryImage);
segmentationThreshold = max(projection) * 0.5;
segmentationPoints = find(projection > segmentationThreshold);

segmentedCharacters = cell(1, length(segmentationPoints)-1);
for i = 1:length(segmentationPoints)-1
    segmentedCharacters{i} = binaryImage(:, segmentationPoints(i):segmentationPoints(i+1));
end

  1. 字符特征提取:对于每个分割得到的字符图像,提取适当的特征以进行识别。常见的特征包括形状、纹理和统计等。
% 这里使用字符图像的区域面积作为示例特征
characterFeatures = zeros(1, length(segmentedCharacters));
for i = 1:length(segmentedCharacters)
    characterFeatures(i) = sum(segmentedCharacters{i}(:));
end


  1. 字符识别:使用训练好的分类器(如支持向量机、卷积神经网络等)对提取的特征进行分类和识别。
% 这里简单地将每个字符的区域面积与阈值进行比较来判断字符类型
threshold = 1000; % 假设阈值
recognizedCharacters = cell(1, length(characterFeatures));
for i = 1:length(characterFeatures)
    if characterFeatures(i) > threshold
        recognizedCharacters{i} = '字母/数字';
    else
        recognizedCharacters{i} = '符号';
    end
end


  1. 结果展示:将识别结果显示在图像上。
imshow(image);
hold on;

for i = 1:length(segmentationPoints)-1
    x = segmentationPoints(i) + round((segmentationPoints(i+1)-segmentationPoints(i))/2);
    y = size(image, 1) - 10;
    text(x, y, recognizedCharacters{i}, 'Color', 'r', 'FontSize', 12, 'HorizontalAlignment', 'center');
end

hold off;


相关文章
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
47 31
|
2天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
1天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
224 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
139 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
106 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
7月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)

热门文章

最新文章

下一篇
DataWorks