【Siamese】手把手教你搭建一个孪生神经网络,比较两张图像的相似度

本文涉及的产品
函数计算FC,每月15万CU 3个月
图像搜索,7款服务类型 1个月
简介: 【Siamese】手把手教你搭建一个孪生神经网络,比较两张图像的相似度

前言

  孪生神经网络是一种先进的深度学习模型,它通过将原始网络和孪生网络结合起来,可以解决图像识别任务中的一些难题。在这篇文章中,我们将介绍孪生神经网络的组成部分、工作原理以及应用案例。希望通过这篇文章,读者可以更深入地了解孪生神经网络的各个方面,从而更好地掌握这种先进的深度学习模型。

组成部分

  孪生神经网络通过将原始网络和孪生网络结合起来。具体来说,孪生神经网络通过孪生技术,将原始网络提取出的特征进行稳定化,使得不同光照、角度、尺寸的图像中提取出的特征更加稳定,从而提高了图像识别的准确性。同时,孪生神经网络也提高了模型的可解释性,通过孪生技术,可以将原始网络和孪生网络的参数分开计算,使得用户的对模型的解释更加容易和理解。

原始网络:

  原始网络主要负责从输入的图像中提取特征。原始网络通常包含多个卷积层和池化层,可以提取出图像中的局部特征。 例如,我们可以使用经典的resnet系列的网络:

python

复制代码

import torch
from torch import Tensor
import torch.nn as nn
from typing import Type, Any, Callable, Union, List, Optional
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
    expansion: int = 1
    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
        norm_layer: Optional[Callable[..., nn.Module]] = None
    ) -> None:
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError('BasicBlock only supports groups=1 and base_width=64')
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride
    def forward(self, x: Tensor) -> Tensor:
        identity = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample is not None:
            identity = self.downsample(x)
        out += identity
        out = self.relu(out)
        return out
class Bottleneck(nn.Module):
    expansion: int = 4
    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
        norm_layer: Optional[Callable[..., nn.Module]] = None
    ) -> None:
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
    def forward(self, x: Tensor) -> Tensor:
        identity = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv3(out)
        out = self.bn3(out)
        if self.downsample is not None:
            identity = self.downsample(x)
        out += identity
        out = self.relu(out)
        return out
class ResNet(nn.Module):
    def __init__(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        layers: List[int],
        num_classes: int = 1000,
        zero_init_residual: bool = False,
        groups: int = 1,
        width_per_group: int = 64,
        replace_stride_with_dilation: Optional[List[bool]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None
    ) -> None:
        super(ResNet, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer
        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
                                       dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
                                       dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
                                       dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)  # type: ignore[arg-type]
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)  # type: ignore[arg-type]
    def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int,
                    stride: int = 1, dilate: bool = False) -> nn.Sequential:
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                norm_layer(planes * block.expansion),
            )
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
                            self.base_width, previous_dilation, norm_layer))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes, groups=self.groups,
                                base_width=self.base_width, dilation=self.dilation,
                                norm_layer=norm_layer))
        return nn.Sequential(*layers)
    def _forward_impl(self, x: Tensor) -> Tensor:
        # See note [TorchScript super()]
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        # x = self.fc(x)
        return x
    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)
def _resnet(
    arch: str,
    block: Type[Union[BasicBlock, Bottleneck]],
    layers: List[int],
    pretrained: bool,
    progress: bool,
    **kwargs: Any
) -> ResNet:
    model = ResNet(block, layers, **kwargs)
    return model
def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
    r"""ResNet-18 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
                   **kwargs)
def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
    r"""ResNet-34 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
                   **kwargs)
def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
    r"""ResNet-50 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
                   **kwargs)

孪生网络&输出层:

  孪生网络主要负责对原始网络提取出的特征进行孪生。孪生网络通常也包含多个卷积层和池化层,但其参数与原始网络不同,以防止对原始网络的特征进行混淆。孪生网络还包括一个全连接层,用于将原始网络的特征与输出结果相连接。

  输出层是孪生神经网络的最后一层,用于输出模型的预测结果。输出层的参数通常与原始网络和孪生网络不同,以防止对输出结果进行混淆。

ini

复制代码

import torch
import torch.nn as nn
from resnet import resnet50
resnet50 = resnet50(pretrained=False)
resnet = resnet50.features
class SiameseNetwork(nn.Module):
    def __init__(self, input_shape):
        super(SiameseNetwork, self).__init__()
        self.resnet = resnet
        self.fc = nn.Sequential(
            nn.Linear(2048, 1023),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(1023, 1))
    def forward_once(self, x):
        output = self.resnet(x)
        output = torch.flatten(output, 1)
        return output
    def forward(self, input1, input2):
        output1 = self.forward_once(input1)
        output2 = self.forward_once(input2)
        output = output1 - output2
        output = self.fc(output)
        return output

  在孪生神经网络中,原始网络和孪生网络的参数是分开计算的。具体来说,孪生网络的参数是在训练过程中,通过对原始网络进行反向传播,从原始网络的输出结果中计算得出的。这样可以确保孪生网络对原始网络的特征进行稳定化处理,从而提高了模型的准确性和稳定性。

工作原理

孪生神经网络是一种深度学习模型,它通过将原始网络和孪生网络结合起来,可以解决图像识别任务中的一些难题。孪生神经网络的工作原理可以概括为以下几个步骤:

  1. 输入数据:孪生神经网络的输入是一张图片,通常是一个三维的张量,其中每个元素代表图片中的一个像素。
  2. 原始网络提取特征:原始网络是孪生神经网络中的第一个网络,它主要负责从输入的图片中提取特征。原始网络通常包含多个卷积层和池化层,可以提取出图片中的局部特征。
  3. 孪生网络稳定特征:孪生网络是孪生神经网络中的第二个网络,它主要负责对原始网络提取出的特征进行稳定化处理。孪生网络通常也包含多个卷积层和池化层,但其参数与原始网络不同,以防止对原始网络的特征进行混淆。孪生网络还包括一个全连接层,用于将原始网络的特征与输出结果相连接。
  4. 孪生网络输出结果:孪生网络通过全连接层将原始网络的特征稳定化处理后,输出一个二维的张量,这个张量代表输入图片的特征向量。
  5. 输出网络输出结果:孪生神经网络的最后一层通常是输出层,它主要负责将孪生网络输出的特征向量转换为输出结果。输出层的参数与原始网络和孪生网络不同,以防止对输出结果进行混淆。
  6. 模型训练:孪生神经网络的训练过程是通过反向传播算法完成的。在训练过程中,孪生神经网络的输出结果与真实标签进行比较,通过误差函数来指导模型的调整,使得模型输出的结果更加准确。

通过上述工作原理,孪生神经网络可以将输入图片中的特征提取并稳定化,从而提高了图像识别模型的准确性和稳定性。


相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
6月前
|
机器学习/深度学习 自然语言处理 数据库
孪生神经网络的作用
孪生神经网络(Siamese Neural Network,SNN)是一种特殊的神经网络架构,用于比较两个输入样本并输出它们之间的相似度。孪生神经网络的主要特点是由两个或多个共享权重的子网络组成,能够学习有效的相似度度量。
79 0
|
7月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
PYTHON TENSORFLOW 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|数据分享
PYTHON TENSORFLOW 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|数据分享
|
2月前
|
机器学习/深度学习 计算机视觉
Siamese网络和Triplet网络
【10月更文挑战第1天】
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
56 3
|
1月前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的奇迹:如何用神经网络识别图像
【10月更文挑战第33天】在这篇文章中,我们将探索深度学习的奇妙世界,特别是卷积神经网络(CNN)在图像识别中的应用。我们将通过一个简单的代码示例,展示如何使用Python和Keras库构建一个能够识别手写数字的神经网络。这不仅是对深度学习概念的直观介绍,也是对技术实践的一次尝试。让我们一起踏上这段探索之旅,看看数据、模型和代码是如何交织在一起,创造出令人惊叹的结果。
32 0
|
2月前
|
机器学习/深度学习 PyTorch API
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
|
3月前
|
机器学习/深度学习 自然语言处理 计算机视觉
用于图像和用于自然语言的神经网络区别
主要区别总结 数据结构:图像数据是二维像素矩阵,具有空间结构;文本数据是一维序列,具有时间结构。 网络架构:图像处理常用CNN,注重局部特征提取;自然语言处理常用RNN/LSTM/Transformer,注重序列和全局依赖。 操作单元:图像处理中的卷积核在空间上操作;自然语言处理中的注意力机制在序列上操作。
28 2
|
4月前
|
机器学习/深度学习 人工智能 编解码
【神经网络】基于对抗神经网络的图像生成是如何实现的?
对抗神经网络,尤其是生成对抗网络(GAN),在图像生成领域扮演着重要角色。它们通过一个有趣的概念——对抗训练——来实现图像的生成。以下将深入探讨GAN是如何实现基于对抗神经网络的图像生成的
45 3
|
6月前
|
并行计算 PyTorch 程序员
老程序员分享:Pytorch入门之Siamese网络
老程序员分享:Pytorch入门之Siamese网络
110 0
|
7月前
|
机器学习/深度学习 监控 自动驾驶
【传知代码】从零开始搭建图像去雾神经网络-论文复现
本文介绍了基于集成学习的双分支非均匀去雾神经网络的复现,该网络由迁移学习子网和数据拟合子网组成,分别处理全局表示和数据拟合。网络使用Res2Net作为编码器,并结合通道和像素注意力模块。代码可在提供的链接下载。网络在交通监控、自动驾驶、航海和目标跟踪等领域有广泛应用,通过提升图像质量来提高系统性能。实验在O-Haze、I-Haze和NH-Haze数据集上进行,展示了网络在去除雾霾方面的效果,尽管存在细节模糊和色彩饱和度低的问题。
173 1

热门文章

最新文章

下一篇
DataWorks