【benchmark】三行代码解决你训练速度慢的问题

简介: 【benchmark】三行代码解决你训练速度慢的问题

前言

  在机器学习领域,GPU加速是一个非常重要的概念。而cudnn.benchmark = True这个小小的设置,却可以让GPU的性能提升数倍!这个是最近在逛GITHUB时候发现的一个好用的trick,希望能帮助到大家。

原理

  cudnn.benchmark = True是一个针对深度学习框架的GPU加速设置。它的原理是在网络训练的过程中,根据当前的输入数据动态地选择最优的卷积算法,从而达到最优的GPU加速效果。

  一般情况下,深度学习框架会默认使用一些预定义的卷积算法来加速网络的训练。但是,这些算法并不一定是最优的,因为它们是针对特定的硬件和数据集进行优化的。而cudnn.benchmark = True则会在每次训练时重新评估算法的性能,选择最优的卷积算法来进行加速。

  这个设置的效果非常显著,尤其是在深度神经网络的训练中。通过动态地选择最优的卷积算法,cudnn.benchmark = True可以大大减少GPU的负担,加速网络的训练过程。同时,它还可以避免一些可能出现的错误,比如算法不兼容或者不支持某些操作等问题。

实操

  相信大家对如下代码都不陌生:

ini

复制代码

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

更改为:

ini

复制代码

if torch.cuda.is_available():
    device = torch.device('cuda')
    torch.backends.cudnn.benchmark = True
else:
    device = torch.device('cpu')

对!你没有看错,这个改进就是这么风骚,就是这么简单。

注意事项

在使用cudnn.benchmark = True时,需要注意以下几点:

  1. 仅在确定网络结构后使用:cudnn.benchmark = True的设置需要在确定网络结构后使用,否则可能会导致不必要的开销。因为在网络结构不确定的情况下,cudnn.benchmark = True需要花费更多的时间来评估最优的卷积算法。
  2. 对于小数据集可能不适用:cudnn.benchmark = True的优化是基于大数据集的,因此在小数据集上可能会出现性能下降的情况。
  3. 不同的硬件可能会有不同的结果:cudnn.benchmark = True的优化是根据特定的硬件进行的,因此在不同的硬件上可能会有不同的结果。
  4. 可能会导致不稳定性:cudnn.benchmark = True可能会导致训练的不稳定性,因为它会动态地选择算法,可能会导致一些不稳定的情况出现。


相关实践学习
基于阿里云DeepGPU实例,用AI画唯美国风少女
本实验基于阿里云DeepGPU实例,使用aiacctorch加速stable-diffusion-webui,用AI画唯美国风少女,可提升性能至高至原性能的2.6倍。
相关文章
|
2月前
|
机器学习/深度学习 安全
ModelScope问题之轮数没有训练完推理有影响如何解决
ModelScope训练是指在ModelScope平台上对机器学习模型进行训练的活动;本合集将介绍ModelScope训练流程、模型优化技巧和训练过程中的常见问题解决方法。
32 0
|
1月前
|
机器学习/深度学习 并行计算 PyTorch
使用PyTorch Profiler进行模型性能分析,改善并加速PyTorch训练
加速机器学习模型训练是工程师的关键需求。PyTorch Profiler提供了一种分析工具,用于测量CPU和CUDA时间,以及内存使用情况。通过在训练代码中嵌入分析器并使用tensorboard查看结果,工程师可以识别性能瓶颈。Profiler的`record_function`功能允许为特定操作命名,便于跟踪。优化策略包括使用FlashAttention或FSDP减少内存使用,以及通过torch.compile提升速度。监控CUDA内核执行和内存分配,尤其是避免频繁的cudaMalloc,能有效提升GPU效率。内存历史记录分析有助于检测内存泄漏和优化批处理大小。
55 1
|
2月前
|
算法 异构计算
推测解码:在不降低准确性的情况下将LLM推理速度提高2 - 3倍
在本篇文章我们将详细讨论推测解码,这是一种可以将LLM推理速度提高约2 - 3倍而不降低任何准确性的方法。我们还将会介绍推测解码代码实现,并看看它与原始transformer 实现相比到底能快多少。
93 10
|
2月前
|
存储 机器学习/深度学习 算法
如何准确的估计llm推理和微调的内存消耗
最近发布的三个大型语言模型——Command-R+ (104B参数), Mixtral-8x22b (141B参数的MoE模型), 和 Llama 3 70b (70.6B参数)——需要巨大的内存资源。推理时,Command-R+需193.72GB GPU RAM,Mixtral-8x22B需262.63GB,Llama 370b需131.5GB。激活的内存消耗根据序列长度、批大小等因素变化。文章详细介绍了计算这些模型内存需求的方法,并探讨了如何通过量化、优化器优化和梯度检查点减少内存使用,以适应微调和推理。
173 0
|
2月前
|
机器学习/深度学习 人工智能 监控
2、【KV260开发】yolov4模型训练、量化、编译、部署
2、【KV260开发】yolov4模型训练、量化、编译、部署
30 0
|
2月前
|
测试技术 BI
性能基准测试基本流程
性能基准测试基本流程
|
10月前
|
人工智能 人机交互 语音技术
INTERSPEECH2023论文解读|BAT一种低延迟低内存消耗的RNN-T模型
INTERSPEECH2023论文解读|BAT一种低延迟低内存消耗的RNN-T模型
156 0
|
机器学习/深度学习 并行计算
快速解决深度学习推理过程cuda或tensorRT推理速度变慢的办法【亲测有效】
快速解决深度学习推理过程cuda或tensorRT推理速度变慢的办法【亲测有效】
486 0
|
PyTorch 算法框架/工具
【Ignite实践】更少的代码量训练模型(二)
【Ignite实践】更少的代码量训练模型(二)
126 0
|
机器学习/深度学习 数据可视化 PyTorch
【Ignite实践】更少的代码量训练模型(一)
【Ignite实践】更少的代码量训练模型(一)
193 0