【数据结构查找算法篇】----二分查找【实战项目】

简介: 【数据结构查找算法篇】----二分查找【实战项目】

作为一名对技术充满热情的学习者,我一直以来都深刻地体会到知识的广度和深度。在这个不断演变的数字时代,我远非专家,而是一位不断追求进步的旅行者。通过这篇博客,我想分享我在某个领域的学习经验,与大家共同探讨、共同成长。请大家以开放的心态阅读,相信你们也会在这段知识之旅中找到启示。



前言

想象一下,你在一座图书馆里的一排排整齐排列的书架前,这些书按照字母顺序摆放着,你需要找到一本名字以字母"M"开头的书。

使用二分查找的方法,你会:

  1. 先站在书架的中间位置,这大致相当于字母顺序的“M”附近。
  2. 如果你手上的书以字母“S”开头,那么你知道“M”开头的书应该在你左边的上。
  3. 你忽略右半部分的书架,将范围缩小到左半部分。
  4. 然后你去左边书架的中间位置,重复进行查找。
  5. 如果这次拿到的书以字母“G”开头,意味着“M”会在你右手边的书架上。
  6. 再次缩小范围,只考虑“G”和“S”之间的部分,并在这个缩小后的范围内继续寻找。
    重复以上步骤,直到你找到以“M”开头的书或者确定书架上没有这本书为止。每一次查找,你都把搜索范围减半,直至找到所需的书或缩小到无法再分割的范围。

一、什么是二分查找

二分查找(Binary Search)是一种在有序数组中查找特定元素的高效搜索算法。二分查找的关键是每一次比较都可以排除掉一半的搜索范围,它利用了数据的有序性,这个算法的时间复杂度是 O(log n),其中 n 是数组中的元素数量。

二分查找算法的基本步骤如下:

  1. 确定数组的中间点索引(mid),通常是 (low + high) / 2,这里 low 是搜索范围的下界,high 是上界。
  2. 将待查找的值(target)与中间点的元素值进行比较:
  • 如果 target 等于中间点的元素,则找到了这个元素,返回其索引。
  • 如果 target 小于中间点的元素,则表示 target 应该在数组的左侧(较低的半部分),则设置 high 为 mid - 1,然后回到第一步。
  • 如果 target 大于中间点的元素,则表示 target 应该在数组的右侧(较高的半部分),则设置 low 为 mid + 1,然后回到第一步。
  1. 如果 low 超过 high,表示搜索范围内没有找到目标元素,返回一个指示未找到的特殊值,例如 -1。

下面是一个简单的二分查找实现的伪代码:

function binarySearch(array, target) {
    let low = 0;
    let high = array.length - 1;
    while (low <= high) {
        let mid = low + (high - low) / 2;  // 更安全的计算方式,可以防止溢出
        if (array[mid] == target) {
            return mid;  // 找到目标,返回索引
        } else if (array[mid] < target) {
            low = mid + 1;  // 继续在右侧查找
        } else {
            high = mid - 1;  // 继续在左侧查找
        }
    }
    return -1;  // 没有找到目标元素
}

使用二分查找时,你的数据必须是有序的,否则这种搜索方法将不起作用。它主要应用于静态数据或者不经常变更的情况,因为如果数据经常变动,维护排序的成本可能会很高。

二、示例

序数组是 [1, 3, 5, 7, 9, 11, 13, 15, 17, 19],我们要查找的目标值是 11。

步骤如下:

  1. 初始化: low = 0, high = 9(数组的最后一个索引)
  2. 步骤一: 计算中间点索引
    mid = (low + high) / 2 = (0 + 9) / 2 = 4.5,取整数部分 mid = 4
    查找数组索引为4的元素,发现 array[4] = 9
  3. 步骤二: 比较中间点的元素和目标值
  • 因为 9 < 11,我们知道如果11在数组里,它应该在中间点的右边。
  • 因此,我们调整 low = mid + 1,即 low = 4 + 1 = 5。
  1. 步骤三: 重复步骤一
  • 我们更新了low,现在的搜索范围变成了索引5到索引9。
  • 再次计算新的中间点 mid = (low + high) / 2 = (5 + 9) / 2 = 7
  1. 查找数组索引为7的元素,发现 array[7] = 15
  2. 步骤四: 再次比较中间点的元素和目标值
  • 因为 15 > 11,我们知道如果11在数组里,它应该在中间点的左边。
  • 因此,我们调整 high = mid - 1,即 high = 7 - 1 = 6。
  1. 步骤五: 再次重复步骤一
  • 我们更新了high,现在的搜索范围缩小到了索引5到索引6。
  • 再次计算中间点 mid = (low + high) / 2 = (5 + 6) / 2 = 5.5,取整数部分 mid = 5
  1. 查找数组索引为5的元素,发现 array[5] = 11
  2. 步骤六: 比较中间点的元素和目标值
  • 发现 array[5] = 11 正是我们要查找的目标值。

因此,最终我们发现目标值11位于数组的索引5处。通过以上步骤,我们使用二分查找在数组 [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] 中找到了数字11。

三、应用场景

二分查找算法在实际应用中非常广泛,一些典型的应用场景包括:

  1. 查找元素: 在有序数组中快速查找特定的元素。
  2. 计算机科学: 编译器在解析到排序后的符号表时,用以快速查找变量和函数的地址。
  3. 优化问题: 在具有单调性质的实际问题中,如在一定范围内寻找满足特定条件的最小(或最大)值。
  4. 数学问题:在数值分析中,二分查找可用于求解处于有界区间的根问题,如二分法求解方程的根。
  5. 数据库: SQL 数据库在索引结构(如B树等)中使用二分查找来快速定位记录。
  6. 机器学习: 一些机器学习算法在训练过程中对超参数进行优化时会使用二分查找,尤其是在超参数有明确边界的情况下。
  7. 游戏开发: 在游戏中对一系列有序的水平阈值进行检索,以确定一个特定的游戏状态或触发事件。
  8. 软件工程: 在版本控制时使用二分查找来快速识别引入错误的代码版本(比如git中的bisect命令)。
  9. 网页开发: 对工作中的时间排序日志进行搜索,以查找事件发生的具体时间点。
  10. 文件系统: 在文件系统中,二分查找可以用来搜索大型有序文件列表,例如查找目录项。

二分查找算法之所以受欢迎,是因为它的效率很高,其时间复杂度为O(log n),远低于简单查找的O(n)复杂度。因此,在处理大数据集时,如果数据已排序,二分查找或其变体通常是首选的查找算法。

四、底层逻辑

二分查找的底层逻辑是基于分而治之(Divide and Conquer)的策略。其核心思想是将一个大问题分解成小问题来解决,并且利用数据的有序性缩减搜索范围,从而大幅度提高查找效率。具体逻辑如下:

1.有序数据: 二分查找要求数据是有序的,无论是升序还是降序。

2.选择中点: 在当前查找范围内选择一个中点。数字比较通常是对当前查找范围的最低索引和最高索引进行求和后除以二取整得到。

3.比较中点值: 将中点的值与目标值进行比较。

  • 如果中点的值等于目标值,则查找成功,返回中点索引。
  • 如果中点的值小于目标值,则说明目标值应该在当前中点的右边(对于升序数组)。那么将查找范围调整为中点右侧的子区间,并且再次进行中点选择和比较的操作。
  • 如果中点的值大于目标值,则说明目标值应该在当前中点的左边(对于升序数组)。那么将查找范围调整为中点左侧的子区间,并且再次进行中点选择和比较的操作。

4.迭代或递归: 这个过程可以通过迭代(循环)或递归的方式重复进行,直到找到目标值或者当前查找范围为空(即开始索引大于结束索引)为止,后者意味着目标值不存在于数组中。

五、Java实战项目

  • 使用二分查找解决类似于在一个有序的商品价格列表中查找特定价格或者价格区间的问题,或者在游戏开发中搜索特定分数的排名等。以下是一个简单的Java代码示例,用于在一个有序数组中查找一个值,并包含了详细的代码解释和问题解决思路。
public class BinarySearchExample {
    /**
     * 二分查找算法
     * 
     * @param arr 有序数组
     * @param key 要查找的值
     * @return key在数组中的位置,若不在数组中返回-1
     */
    public static int binarySearch(int[] arr, int key) {
        int low = 0;
        int high = arr.length - 1;
        while (low <= high) {
            // 计算中间索引
            int mid = low + (high - low) / 2; // 避免直接相加导致的整数溢出
            int midVal = arr[mid];
            if (midVal < key) {
                low = mid + 1; // 如果中间值小于查找值,在中间值的右侧继续查找
            } else if (midVal > key) {
                high = mid - 1; // 如果中间值大于查找值,在中间值的左侧继续查找
            } else {
                return mid; // 找到目标值,直接返回其索引
            }
        }
        return -1; // 目标值不在数组中,返回-1作为没有找到的标记
    }
    public static void main(String[] args) {
        int[] arr = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}; // 有序数组
        int key = 11; // 要查找的值
        int index = binarySearch(arr, key); // 调用二分查找方法
        if (index != -1) {
            System.out.println("元素 " + key + " 在数组中的位置是: " + index);
        } else {
            System.out.println("元素 " + key + " 不在数组中");
        }
    }
}

解决思路:

  1. 确定查找范围: 初始化两个指针,lowhigh 分别指向数组的起始位置和结束位置。
  2. 循环查找: 当 low 小于或者等于 high 时,执行下面的步骤。否则跳出循环,表示没有找到。
  3. 计算中点: 计算 lowhigh 的中间位置 mid,为了防止lowhigh 相加时整数溢出,使用 low+(high - low)/2 来代替 (low + high) / 2
  4. 比较: 获取中间位置的值midVal,和目标值key进行比较:
  • 如果 midVal 小于 key,说明 key 应该在 mid 右边的区域,更新 low = mid + 1
  • 如果 midVal 大于 key,说明 key 应该在 mid 左边的区域,更新 high = mid - 1
  • 如果相等,则说明找到目标值,返回该位置 mid
  1. 返回结果: 如果循环结束,意味着没有找到目标值,返回 -1

以上是使用二分查找在Java项目中解决问题的一般方法和步骤。这个例子中的原理和代码结构可以适用于任何需要快速查找的场景。


总结

二分查找,分而治之。

感谢大家抽出宝贵的时间来阅读博主的博客,新人博主,感谢大家关注点赞,祝大家未来的学习工作生活一帆风顺,加油!!!

目录
相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
70 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
26天前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
21 1
|
1月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
33 4
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
56 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
1月前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
21 0
|
29天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
6天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
14天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
15天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
下一篇
无影云桌面