【数据结构查找算法篇】----二分查找【实战项目】

简介: 【数据结构查找算法篇】----二分查找【实战项目】

作为一名对技术充满热情的学习者,我一直以来都深刻地体会到知识的广度和深度。在这个不断演变的数字时代,我远非专家,而是一位不断追求进步的旅行者。通过这篇博客,我想分享我在某个领域的学习经验,与大家共同探讨、共同成长。请大家以开放的心态阅读,相信你们也会在这段知识之旅中找到启示。



前言

想象一下,你在一座图书馆里的一排排整齐排列的书架前,这些书按照字母顺序摆放着,你需要找到一本名字以字母"M"开头的书。

使用二分查找的方法,你会:

  1. 先站在书架的中间位置,这大致相当于字母顺序的“M”附近。
  2. 如果你手上的书以字母“S”开头,那么你知道“M”开头的书应该在你左边的上。
  3. 你忽略右半部分的书架,将范围缩小到左半部分。
  4. 然后你去左边书架的中间位置,重复进行查找。
  5. 如果这次拿到的书以字母“G”开头,意味着“M”会在你右手边的书架上。
  6. 再次缩小范围,只考虑“G”和“S”之间的部分,并在这个缩小后的范围内继续寻找。
    重复以上步骤,直到你找到以“M”开头的书或者确定书架上没有这本书为止。每一次查找,你都把搜索范围减半,直至找到所需的书或缩小到无法再分割的范围。

一、什么是二分查找

二分查找(Binary Search)是一种在有序数组中查找特定元素的高效搜索算法。二分查找的关键是每一次比较都可以排除掉一半的搜索范围,它利用了数据的有序性,这个算法的时间复杂度是 O(log n),其中 n 是数组中的元素数量。

二分查找算法的基本步骤如下:

  1. 确定数组的中间点索引(mid),通常是 (low + high) / 2,这里 low 是搜索范围的下界,high 是上界。
  2. 将待查找的值(target)与中间点的元素值进行比较:
  • 如果 target 等于中间点的元素,则找到了这个元素,返回其索引。
  • 如果 target 小于中间点的元素,则表示 target 应该在数组的左侧(较低的半部分),则设置 high 为 mid - 1,然后回到第一步。
  • 如果 target 大于中间点的元素,则表示 target 应该在数组的右侧(较高的半部分),则设置 low 为 mid + 1,然后回到第一步。
  1. 如果 low 超过 high,表示搜索范围内没有找到目标元素,返回一个指示未找到的特殊值,例如 -1。

下面是一个简单的二分查找实现的伪代码:

function binarySearch(array, target) {
    let low = 0;
    let high = array.length - 1;
    while (low <= high) {
        let mid = low + (high - low) / 2;  // 更安全的计算方式,可以防止溢出
        if (array[mid] == target) {
            return mid;  // 找到目标,返回索引
        } else if (array[mid] < target) {
            low = mid + 1;  // 继续在右侧查找
        } else {
            high = mid - 1;  // 继续在左侧查找
        }
    }
    return -1;  // 没有找到目标元素
}

使用二分查找时,你的数据必须是有序的,否则这种搜索方法将不起作用。它主要应用于静态数据或者不经常变更的情况,因为如果数据经常变动,维护排序的成本可能会很高。

二、示例

序数组是 [1, 3, 5, 7, 9, 11, 13, 15, 17, 19],我们要查找的目标值是 11。

步骤如下:

  1. 初始化: low = 0, high = 9(数组的最后一个索引)
  2. 步骤一: 计算中间点索引
    mid = (low + high) / 2 = (0 + 9) / 2 = 4.5,取整数部分 mid = 4
    查找数组索引为4的元素,发现 array[4] = 9
  3. 步骤二: 比较中间点的元素和目标值
  • 因为 9 < 11,我们知道如果11在数组里,它应该在中间点的右边。
  • 因此,我们调整 low = mid + 1,即 low = 4 + 1 = 5。
  1. 步骤三: 重复步骤一
  • 我们更新了low,现在的搜索范围变成了索引5到索引9。
  • 再次计算新的中间点 mid = (low + high) / 2 = (5 + 9) / 2 = 7
  1. 查找数组索引为7的元素,发现 array[7] = 15
  2. 步骤四: 再次比较中间点的元素和目标值
  • 因为 15 > 11,我们知道如果11在数组里,它应该在中间点的左边。
  • 因此,我们调整 high = mid - 1,即 high = 7 - 1 = 6。
  1. 步骤五: 再次重复步骤一
  • 我们更新了high,现在的搜索范围缩小到了索引5到索引6。
  • 再次计算中间点 mid = (low + high) / 2 = (5 + 6) / 2 = 5.5,取整数部分 mid = 5
  1. 查找数组索引为5的元素,发现 array[5] = 11
  2. 步骤六: 比较中间点的元素和目标值
  • 发现 array[5] = 11 正是我们要查找的目标值。

因此,最终我们发现目标值11位于数组的索引5处。通过以上步骤,我们使用二分查找在数组 [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] 中找到了数字11。

三、应用场景

二分查找算法在实际应用中非常广泛,一些典型的应用场景包括:

  1. 查找元素: 在有序数组中快速查找特定的元素。
  2. 计算机科学: 编译器在解析到排序后的符号表时,用以快速查找变量和函数的地址。
  3. 优化问题: 在具有单调性质的实际问题中,如在一定范围内寻找满足特定条件的最小(或最大)值。
  4. 数学问题:在数值分析中,二分查找可用于求解处于有界区间的根问题,如二分法求解方程的根。
  5. 数据库: SQL 数据库在索引结构(如B树等)中使用二分查找来快速定位记录。
  6. 机器学习: 一些机器学习算法在训练过程中对超参数进行优化时会使用二分查找,尤其是在超参数有明确边界的情况下。
  7. 游戏开发: 在游戏中对一系列有序的水平阈值进行检索,以确定一个特定的游戏状态或触发事件。
  8. 软件工程: 在版本控制时使用二分查找来快速识别引入错误的代码版本(比如git中的bisect命令)。
  9. 网页开发: 对工作中的时间排序日志进行搜索,以查找事件发生的具体时间点。
  10. 文件系统: 在文件系统中,二分查找可以用来搜索大型有序文件列表,例如查找目录项。

二分查找算法之所以受欢迎,是因为它的效率很高,其时间复杂度为O(log n),远低于简单查找的O(n)复杂度。因此,在处理大数据集时,如果数据已排序,二分查找或其变体通常是首选的查找算法。

四、底层逻辑

二分查找的底层逻辑是基于分而治之(Divide and Conquer)的策略。其核心思想是将一个大问题分解成小问题来解决,并且利用数据的有序性缩减搜索范围,从而大幅度提高查找效率。具体逻辑如下:

1.有序数据: 二分查找要求数据是有序的,无论是升序还是降序。

2.选择中点: 在当前查找范围内选择一个中点。数字比较通常是对当前查找范围的最低索引和最高索引进行求和后除以二取整得到。

3.比较中点值: 将中点的值与目标值进行比较。

  • 如果中点的值等于目标值,则查找成功,返回中点索引。
  • 如果中点的值小于目标值,则说明目标值应该在当前中点的右边(对于升序数组)。那么将查找范围调整为中点右侧的子区间,并且再次进行中点选择和比较的操作。
  • 如果中点的值大于目标值,则说明目标值应该在当前中点的左边(对于升序数组)。那么将查找范围调整为中点左侧的子区间,并且再次进行中点选择和比较的操作。

4.迭代或递归: 这个过程可以通过迭代(循环)或递归的方式重复进行,直到找到目标值或者当前查找范围为空(即开始索引大于结束索引)为止,后者意味着目标值不存在于数组中。

五、Java实战项目

  • 使用二分查找解决类似于在一个有序的商品价格列表中查找特定价格或者价格区间的问题,或者在游戏开发中搜索特定分数的排名等。以下是一个简单的Java代码示例,用于在一个有序数组中查找一个值,并包含了详细的代码解释和问题解决思路。
public class BinarySearchExample {
    /**
     * 二分查找算法
     * 
     * @param arr 有序数组
     * @param key 要查找的值
     * @return key在数组中的位置,若不在数组中返回-1
     */
    public static int binarySearch(int[] arr, int key) {
        int low = 0;
        int high = arr.length - 1;
        while (low <= high) {
            // 计算中间索引
            int mid = low + (high - low) / 2; // 避免直接相加导致的整数溢出
            int midVal = arr[mid];
            if (midVal < key) {
                low = mid + 1; // 如果中间值小于查找值,在中间值的右侧继续查找
            } else if (midVal > key) {
                high = mid - 1; // 如果中间值大于查找值,在中间值的左侧继续查找
            } else {
                return mid; // 找到目标值,直接返回其索引
            }
        }
        return -1; // 目标值不在数组中,返回-1作为没有找到的标记
    }
    public static void main(String[] args) {
        int[] arr = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}; // 有序数组
        int key = 11; // 要查找的值
        int index = binarySearch(arr, key); // 调用二分查找方法
        if (index != -1) {
            System.out.println("元素 " + key + " 在数组中的位置是: " + index);
        } else {
            System.out.println("元素 " + key + " 不在数组中");
        }
    }
}

解决思路:

  1. 确定查找范围: 初始化两个指针,lowhigh 分别指向数组的起始位置和结束位置。
  2. 循环查找: 当 low 小于或者等于 high 时,执行下面的步骤。否则跳出循环,表示没有找到。
  3. 计算中点: 计算 lowhigh 的中间位置 mid,为了防止lowhigh 相加时整数溢出,使用 low+(high - low)/2 来代替 (low + high) / 2
  4. 比较: 获取中间位置的值midVal,和目标值key进行比较:
  • 如果 midVal 小于 key,说明 key 应该在 mid 右边的区域,更新 low = mid + 1
  • 如果 midVal 大于 key,说明 key 应该在 mid 左边的区域,更新 high = mid - 1
  • 如果相等,则说明找到目标值,返回该位置 mid
  1. 返回结果: 如果循环结束,意味着没有找到目标值,返回 -1

以上是使用二分查找在Java项目中解决问题的一般方法和步骤。这个例子中的原理和代码结构可以适用于任何需要快速查找的场景。


总结

二分查找,分而治之。

感谢大家抽出宝贵的时间来阅读博主的博客,新人博主,感谢大家关注点赞,祝大家未来的学习工作生活一帆风顺,加油!!!

目录
相关文章
|
12天前
|
人工智能 编解码 算法
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
本文介绍了通义灵码2.0 AI程序员在嵌入式开发中的实战应用。通过安装VS Code插件并登录阿里云账号,用户可切换至DeepSeek V3模型,利用其强大的代码生成能力。实战案例中,AI程序员根据自然语言描述快速生成了C语言的base64编解码算法,包括源代码、头文件、测试代码和CMake编译脚本。即使在编译错误和需求迭代的情况下,AI程序员也能迅速分析问题并修复代码,最终成功实现功能。作者认为,通义灵码2.0显著提升了开发效率,打破了编程语言限制,是AI编程从辅助工具向工程级协同开发转变的重要标志,值得开发者广泛使用。
7862 67
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
|
3天前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
32 9
 算法系列之数据结构-二叉树
|
10天前
|
算法 Java 索引
算法系列之搜素算法-二分查找
二分查找是一种在`有序`数组中查找特定元素的算法。它的基本思想是通过将数组分成两半,逐步缩小查找范围,直到找到目标元素或确定目标元素不存在。
25 9
算法系列之搜素算法-二分查找
|
2天前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
43 22
|
1月前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
88 29
|
1月前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
99 25
|
1月前
|
存储 人工智能 算法
C 408—《数据结构》算法题基础篇—数组(通俗易懂)
408考研——《数据结构》算法题基础篇之数组。(408算法题的入门)
72 23
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
83 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
2天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
2天前
|
算法 数据安全/隐私保护
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。