python 插值算法

简介: 最近在做时间序列预测时,在突增或者突降的变化剧烈的情况下,拟合参数的效果不好,有用到插值的算法补全一些数据来平滑剧烈变化过程。还有在图像处理中,也经常有用到插值算法来改变图像的大小,在图像超分(Image Super-Resolution)中上采样也有插值的身影【2月更文挑战第8天】

python 插值算法

1. 什么是插值

最近在做时间序列预测时,在突增或者突降的变化剧烈的情况下,拟合参数的效果不好,有用到插值的算法补全一些数据来平滑剧烈变化过程。还有在图像处理中,也经常有用到插值算法来改变图像的大小,在图像超分(Image Super-Resolution)中上采样也有插值的身影。

插值(interpolation),顾名思义就是插入一些新的数据,当然这些值是根据已有数据生成。插值算法有很多经典算法, 本文分享如下:

  • 线性插值
  • 双线性插值
  • 双三次插值bicubic interpolation

2. 插值算法原理和实现

2.1 线性插值

线性插值是最简单的插值算法。如下图已知(x0, y0) (x1, y1),在x处插值一点(x, y)。

yyq-2021-07-10-23-00-11.png

可以通过简单几何知识来推出公式

yyq-2021-07-10-23-07-09.png
yyq-2021-07-10-23-08-02.png

实现上直接套公式,如果想插值多个点,可以利用线性回归的方式。

import os
import numpy as np
from sklearn.linear_model import LinearRegression

def linear_interpolation(data, inter_num=4):
    clf = LinearRegression()
    X = np.array([[1], [inter_num+2]])
    y = data
    clf.fit(X, y)
    inter_values = clf.predict(np.array([ [i+2] for i in range(inter_num)]))
    return inter_values
data = [[10], [20]]
linear_interpolation(data, 1)
# array([[15.]])

def manual_linear_interpolation(x0, y0, x1, y1, x):
    return y0+(x-x0)*(y1-y0)/(x1-x0)
manual_linear_interpolation(1, 10, 3, 20, 2)
# 15.0

线性插值算法经常用在平滑数据上,也用在缺失值预处理中。

2.2 双线性插值

双线性插值是在两个方向上同时进行线性插值,经常用在图像处理中。双线性插值是已知2*2个点,插值生成一个点的过程。

如下图所示,双线性插值已知(x0, y1)(x0, y0)(x1, y1)(x1, y0)4个点,插值计算(x, y)。

  • 先插值生成(x, y1)(x, y0)

    yyq-2021-07-10-23-25-32.png

  • 在插值生成(x, y)

    yyq-2021-07-10-23-25-59.png

yyq-2021-07-10-23-20-39.png

import cv2
lean_img = cv2.imread('./lena.jpg')
lena_x2 = cv2.resize(lean_img, (0, 0), fx=2, fy=2, interpolation=cv2.INTER_LINEAR)

2.3 双三次插值

双线性插值利用22个点插值生成一个新的点,而双三次插值利用44个点来插值一个新的点。插值的过程就是如何估计aij, aij可以认为是16个点对插值点的影响因子。

yyq-2021-07-11-23-17-40.png

影响因子设计来自于Cubic Convolution Interpolation For Digital Image Processing,

以下为Bicubic函数

yyq-2021-07-11-23-45-50.png
yyq-2021-07-11-23-46-32.png

import cv2
lean_img = cv2.imread('./lena.jpg')
lena_x2_cubic = cv2.resize(lean_img, (0, 0), fx=2, fy=2, interpolation=cv2.INTER_CUBIC)

左边为双线性插值,右边有双三次插值,可以看出双三次插值效果好,双线性插值更平滑一点,清晰度不足。

yyq-2021-07-12-23-21-24.png
yyq-2021-07-12-23-24-03.png

3. 总结

本文介绍了三种常见的插值算法以及在数字图像处理中的应用。总结如下:

  • 线性插值:通过2点插值新的点,可以利用线性回归计算插值点
  • 双线性插值:通过4个点插值新的点
  • 双三次插值:通过16个点插值新的点,插值权重利用bicubic函数
目录
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
23 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
29天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
257 55
|
18天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
110 66
|
2月前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
146 67
|
2月前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
133 61
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
176 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
7天前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
22天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
55 20
|
14天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
19天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
47 5