【矩阵快速幂】封装类及测试用例及样例

简介: 【矩阵快速幂】封装类及测试用例及样例

作者推荐

视频算法专题

通俗的说,就是矩阵的乘方。

封装类

核心代码

class CMat
{
public:
  // 矩阵乘法
  static vector<vector<long long>> multiply(const vector<vector<long long>>& a, const vector<vector<long long>>& b) {
    const int r = a.size(), c = b.front().size(),iK = a.front().size();
    assert(iK == b.size());
    vector<vector<long long>> ret(r, vector<long long>(c));
    for (int i = 0; i < r; i++)
    {
      for (int j = 0; j < c ; j++) 
      {
        for (int k = 0; k < iK; k++)
        {
          ret[i][j] = (ret[i][j] + a[i][k] * b[k][j] ) % s_llMod;
        }
      }
    }
    return ret;
  }
  // 矩阵快速幂
  static vector<vector<long long>> pow( const vector<vector<long long>>& a, vector<vector<long long>> b, long long n) {
    vector<vector<long long>> res = a;
    for (; n; n /= 2) {
      if (n % 2) {
        res = multiply(res, b);
      }
      b = multiply(b, b);
    }
    return res;
  }
  static vector<vector<long long>> TotalRow(const vector<vector<long long>>& a)
  {
    vector<vector<long long>> b(a.front().size(), vector<long long>(1, 1));
    return multiply(a, b);
  }
protected:
  const static long long s_llMod = 1e9 + 7;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
  assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
  if (v1.size() != v2.size())
  {
    assert(false);
    return;
  }
  for (int i = 0; i < v1.size(); i++)
  {
    Assert(v1[i], v2[i]);
  }
}
int main()
{
  vector<vector<long long>> pre = { {1,2} };
  vector<vector<long long>> mat = { {2,3},{1,10} };
  { 
    auto res = CMat::pow(pre, mat, 0);
    Assert(pre, res);
  }
  {
    auto res = CMat::multiply(pre, mat);
    Assert(vector<vector<long long>>{ {4, 23}}, res);
    auto res2 = CMat::pow(pre, mat,1);
    Assert(res2, res);
  }
  {
    auto res = CMat::pow(pre, mat, 2);
    auto res1 = CMat::multiply(pre, mat);
    auto res2 = CMat::multiply(res1, mat);
    Assert(res2, res);
    Assert(vector<vector<long long>>{ {31, 242}}, res);
  };
  for (int i = 3; i < 100; i++)
  {
    auto res = pre;
    for (int j = 0; j < i; j++)
    {
      res = CMat::multiply(res, mat);
    }
    auto res2 = CMat::pow(pre, mat, i);
    Assert(res2, res);
  }
  
}

具体例子

题目、分析和原理见:

【动态规划】【矩阵快速幂】【滚动向量】C++算法552. 学生出勤记录 II

原解法用二维表示状态,改成一维。 i是缺勤数量,j是连续迟到数,新的状态为:3*i+j

6种状态,故转移矩阵为6行6列,故结果矩阵为6列,6个数据1行就足够了。

令旧结果矩阵为mat1,转移矩阵为mat2,新矩阵为mat3,K mat1的列数,mat2的行数。则:

mat3[r][c] = Sum[ 0 , k ) i ^{i}_{[0,k)}[0,k)i(mat1[r][i]*mat2[i][c])

i在mat1中列号,在mat2中是行号。 也就是旧状态在第几列,mat2就在第几行。

新状态就是mat2的行号。

class Solution {
public:
  int checkRecord(int n) {
    vector<vector<long long>> pre(1, vector<long long>(6));//1行6列 
    pre[0][0] = 1;
    vector<vector<long long>> mat(6, vector<long long>(6));
    { 
      //之前的状态在pre是第几列,矩阵中就是第几行。新状态的列号就矩阵的列号
      //处理一次缺勤 ,缺勤两次排除
      for (int i = 0; i < 3; i++)
      {
        mat[i][3]++;
      }
      //处理请假
      for (int i = 0; i < 2; i++)
      {
        for (int j = 0; j < 2; j++)
        {
          const int pre = 3 * i + j;
          mat[pre][pre + 1]++;
        }
      }
      //处理正常
      for (int i = 0; i < 2; i++)
      {
        for (int j = 0; j < 3; j++)
        {
          const int pre = 3 * i + j;
          const int cur = 3 * i;
          mat[pre][cur]++;
        }
      }
    }
    auto res = CMat::pow(pre, mat, n);
    res = CMat::TotalRow(res);
    return res[0][0];
  }
};

测试用例

template

void Assert(const T& t1, const T& t2)

{

assert(t1 == t2);

}

template

void Assert(const vector& v1, const vector& v2)

{

if (v1.size() != v2.size())

{

assert(false);

return;

}

for (int i = 0; i < v1.size(); i++)

{

Assert(v1[i], v2[i]);

}

}

int main()

{

int n;

{

Solution sln;

n = 0;

auto res = sln.checkRecord(n);

Assert(1, res);

}

{

Solution sln;

n = 1;

auto res = sln.checkRecord(n);

Assert(3, res);

}

{

Solution sln;

n = 2;

auto res = sln.checkRecord(n);

Assert(8, res);

}

{

Solution sln;

n = 3;

auto res = sln.checkRecord(n);

Assert(19, res);

}

{

Solution sln;

n = 4;

auto res = sln.checkRecord(n);

Assert(43, res);

}

{

Solution sln;

n = 5;

auto res = sln.checkRecord(n);

Assert(94, res);

}

{

Solution sln;

n = 6;

auto res = sln.checkRecord(n);

Assert(200, res);

}

{

Solution sln;

n = 7;

auto res = sln.checkRecord(n);

Assert(418, res);

}

{

Solution sln;

n = 10101;

auto res = sln.checkRecord(n);

Assert(183236316, res);

}

}


相关文章
|
21天前
|
JSON 测试技术 数据格式
单元测试问题之使用JCode5插件生成测试类如何解决
单元测试问题之使用JCode5插件生成测试类如何解决
54 3
|
21天前
|
Java 测试技术 Spring
单元测试问题之在 JCode5 类中使用 testService如何解决
单元测试问题之在 JCode5 类中使用 testService如何解决
10 2
|
2月前
|
测试技术
详解单元测试问题之MockHandlerImpl类的handle方法中VerificationMode不为空如何解决
详解单元测试问题之MockHandlerImpl类的handle方法中VerificationMode不为空如何解决
35 3
|
2月前
|
测试技术 API Android开发
《手把手教你》系列基础篇(九十七)-java+ selenium自动化测试-框架设计篇-Selenium方法的二次封装和页面基类(详解教程)
【7月更文挑战第15天】这是关于自动化测试框架中Selenium API二次封装的教程总结。教程中介绍了如何设计一个支持不同浏览器测试的页面基类(BasePage),该基类包含了对Selenium方法的二次封装,如元素的输入、点击、清除等常用操作,以减少重复代码。此外,页面基类还提供了获取页面标题和URL的方法。
61 2
|
2月前
|
Java 数据库 Spring
Java编程问题之在测试中使用CGLIB创建代理类如何解决
Java编程问题之在测试中使用CGLIB创建代理类如何解决
|
3月前
|
JavaScript Java 测试技术
《手把手教你》系列技巧篇(七十一)-java+ selenium自动化测试-自定义类解决元素同步问题(详解教程)
【6月更文挑战第12天】本文介绍了如何创建一个自定义类库来解决自动化测试中的元素同步问题。作者指出,大部分错误源于元素因时间不同步而引发,为此提供了一种解决方案。在项目实践中,首先在`library`包下创建名为`MyWait`的类,包含一个方法`isElementPresent`,该方法通过循环尝试并等待指定元素出现,避免了直接使用时间等待可能导致的不准确性。之后,在测试类中调用此自定义方法,成功实现了元素同步。代码示例展示了如何在Java+Selenium自动化测试中应用这个自定义类。
50 2
|
3月前
|
Java 测试技术
测试类基础
测试类基础
24 1
|
3月前
|
Java
springboot Test 测试类中如何排除一个bean类
springboot Test 测试类中如何排除一个bean类
85 0
|
安全 Java 测试技术
python接口自动化(三)--如何设计接口测试用例(详解)
上篇我们已经介绍了什么是接口测试和接口测试的意义。在开始接口测试之前,我们来想一下,如何进行接口测试的准备工作。或者说,接口测试的流程是什么?有些人就很好奇,接口测试要流程干嘛?不就是拿着接口文档直接利用接口 测试工具测试嘛。其实,如果只是三五个接口,你可以这么做一个临时的接口测试。但是,如果是上百个接口,或者,你们公司的这个项目,第一次做接口测试,那么,我们还是很有必要严格遵守接口测试的流程。
333 0
python接口自动化(三)--如何设计接口测试用例(详解)
|
测试技术
正交试验测试用例设计及工具推荐
在科研和生产实践中,人们往往要做许多次实验来进行某项研究。实验条件一般包括很多因素,当因素的值不同时,实验的结果也不一样。如果想把每个因素的每个值都要实验一遍,总实验数就等于各因素的值的个数的乘积,而这个数往往很大,超过了可接受的成本。 例如,假设某个实验由A,B,C,D四个因素,每个因素都有10个不同的取值,那么如果想把每个因素都考虑到,我们需要做 10*10*10*10=10000次实验。 为了减少实验数目,我们必须选出那些最有代表性的例子。于是,就要用到了正交表法(Orthogonal Array Testing Strategy)。
314 0
正交试验测试用例设计及工具推荐