Flink问题之State 0点清除如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。本合集提供有关Apache Flink相关技术、使用技巧和最佳实践的资源。

问题一:State 0点清除的问题


大家好:       我想问下,在ProcessAllWindowFunction中,在每天的0点清除state如何清除?


参考回答:

如果你需要精确的控制每天 0 点清除 state 的话,或许你可以考虑使用 processFunction[1], 然后自己使用 timer

实现相关逻辑

[1]

https://ci.apache.org/projects/flink/flink-docs-release-1.11/zh/dev/stream/operators/process_function.html


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/372163


问题二:flink1.9状态及作业迁移


flink1.9的检查点或保存点中会保留hadoop集群的nameservice数据吗?现在想将一个集群的flink作业迁移到另一个集群,但两个集群的nameservice名称不一样,迁移会有问题吗?如果有问题的话对应状态保存的nameservice可以修改吗?或者说迁移的时候还有哪些其他需要注意的问题?


参考回答:

Checkpoint meta中存储的是完整路径,所以一般会把hdfs的namespace存储起来,导致没办法直接迁移。

Flink-1.11 支持将savepoint(但是不支持Checkpoint)进行位置迁移 [1],而对于Flink-1.9,二者均不支持。

[1] https://issues.apache.org/jira/browse/FLINK-5763


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/372165


问题三:Flink SQL处理Array型的JSON


[
{ "id": 1},
{ "id": 2}
]
读出来变成表的两行。Flink SQL层面最佳实践是什么?
如果没有办法是不是只能改JSON结构了。


参考回答:

可以不用改json的,可以用 UNNEST 把数组拆成多行,也可以写UDTF自己解析对应字段,参考[1]

SELECT users, tag FROM Orders CROSS JOIN UNNEST(tags) AS t (tag) [1] https://ci.apache.org/projects/flink/flink-docs-master/zh/dev/table/sql/queries.html https://ci.apache.org/projects/flink/flink-docs-master/zh/dev/table/sql/queries.html


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/372167


问题四:flink 同时sink hbase和hive,hbase少记录


flink订阅kafka消息,同时sink到hbase和hive中, 当向kafka发送42条记录,然后停止producer发消息,去hive中查可以精准地查到42条,但是在hbase中却只查到30条

query: streamTableEnv.executeSql( """ | |CREATE TABLE hbase_table ( | rowkey VARCHAR, | cf ROW(sex VARCHAR, age INT, created_time VARCHAR) |) WITH ( | 'connector.type' = 'hbase', | 'connector.version' = '2.1.0', | 'connector.table-name' = 'ods:user_hbase6', | 'connector.zookeeper.quorum' = 'cdh1:2181,cdh2:2181,cdh3:2181', | 'connector.zookeeper.znode.parent' = '/hbase', | 'connector.write.buffer-flush.max-size' = '1mb', | 'connector.write.buffer-flush.max-rows' = '1', | 'connector.write.buffer-flush.interval' = '0s' |) |""".stripMargin)

val statementSet = streamTableEnv.createStatementSet() val insertHbase = """ |insert into hbase_table |SELECT | CONCAT(SUBSTRING(MD5(CAST(uid AS VARCHAR)), 0, 6), cast(CEILING(UNIX_TIMESTAMP(created_time)/60) as string), sex) as uid, | ROW(sex, age, created_time ) as cf |FROM (select uid,sex,age, cast(created_time as VARCHAR) as created_time from kafka_table) | |""".stripMargin

statementSet.addInsertSql(insertHbase)

val insertHive = """ | |INSERT INTO odsCatalog.ods.hive_table |SELECT uid, age, DATE_FORMAT(created_time, 'yyyy-MM-dd'), DATE_FORMAT(created_time, 'HH') |FROM kafka_table | |""".stripMargin statementSet.addInsertSql(insertHive)

statementSet.execute()

是因为参数'connector.write.buffer-flush.max-size' = '1mb'吗?我尝试设置‘0’,‘10b','1kb',都失败了,报错如下: Property 'connector.write.buffer-flush.max-size' must be a memory size (in bytes) value but was: 1kb Property 'connector.write.buffer-flush.max-size' must be a memory size (in bytes) value but was: 10b Property 'connector.write.buffer-flush.max-size' must be a memory size (in bytes) value but was: 1

并且,按照官网文档 https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/table/connectors/hbase.html

设置参数也不识别,报错: Caused by: org.apache.flink.table.api.ValidationException: Could not find any factory for identifier 'hbase-2.1.0' that implements 'org.apache.flink.table.factories.DynamicTableSinkFactory' in the classpath.

看了一下源码, org.apache.flink.table.descriptors.HBaseValidator public static final String CONNECTOR_TYPE_VALUE_HBASE = "hbase"; public static final String CONNECTOR_VERSION_VALUE_143 = "2.1.0"; public static final String CONNECTOR_TABLE_NAME = "connector.table-name"; public static final String CONNECTOR_ZK_QUORUM = "connector.zookeeper.quorum"; public static final String CONNECTOR_ZK_NODE_PARENT = "connector.zookeeper.znode.parent"; public static final String CONNECTOR_WRITE_BUFFER_FLUSH_MAX_SIZE = "connector.write.buffer-flush.max-size"; public static final String CONNECTOR_WRITE_BUFFER_FLUSH_MAX_ROWS = "connector.write.buffer-flush.max-rows"; public static final String CONNECTOR_WRITE_BUFFER_FLUSH_INTERVAL = "connector.write.buffer-flush.interval"; 参数还是老参数


参考回答:

(1) connector.write.buffer-flush.max-size这个配置项支持的单位只有mb,其他不支持,所以会报对应的错。这个参数用于 BufferredMutator 做buffer优化的参数,表示buffer存多大的size就触发写,flush.interval参数是按照多长的时间轮询写入,两个参数根据需要配合使用。当connector.write.buffer-flush.interval 设置为 0s 时,表示不会轮询,所以只会等connector.write.buffer-flush.max-size到最大size再写入。你把connector.write.buffer-flush.interval 设置成 1s 应该就能看到数据了。

(2) Hbase connector 1.11.0 之前的版本只支持1.4.3,所以你填2.1.0会报错,在1.11.0开始支持为1.4.x, 所以1.11.0新的connector里支持的参数为’connector’ = ‘hbase-1.4’, 因为hbase 1.4.x版本API是兼容的,另外社区也在讨论支持HBase 2.x[1][1] http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Upgrade-HBase-connector-to-2-2-x-tc42657.html#a42674 http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Upgrade-HBase-connector-to-2-2-x-tc42657.html#a42674


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/372246


问题五:使用Flink Array Field Type


Flink 1.10.0 问题描述:source表中有个test_array_string ARRAY 字段,在DML语句用test_array_string[0]获取数组中的值会报数组越界异常。另外测试过Array 也是相同错误,Array ,Array 等类型也会报数组越界问题。 请问这是Flink1.10的bug吗?

SQL: CREATETABLE source ( …… test_array_string ARRAY ) WITH ( 'connector.type'='kafka', 'update-mode'='append', 'format.type'='json' …… );

CREATETABLE sink( v_string string ) WITH ( …… );

INSERTINTO sink SELECT test_array_string[0] as v_string from source;

kafka样例数据:{"id":1,"test_array_string":["ff”]}

Flink 执行的时候报以下错误: java.lang.ArrayIndexOutOfBoundsException: 33554432 at org.apache.flink.table.runtime.util.SegmentsUtil.getByteMultiSegments(SegmentsUtil.java:598) at org.apache.flink.table.runtime.util.SegmentsUtil.getByte(SegmentsUtil.java:590) at org.apache.flink.table.runtime.util.SegmentsUtil.bitGet(SegmentsUtil.java:534) at org.apache.flink.table.dataformat.BinaryArray.isNullAt(BinaryArray.java:117) at StreamExecCalc$9.processElement(UnknownSource) at org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.pushToOperator(OperatorChain.java:641) at org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect(OperatorChain.java:616) at org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect(OperatorChain.java:596) at org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect(AbstractStreamOperator.java:730) at org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect(AbstractStreamOperator.java:708) at SourceConversion$1.processElement(UnknownSource) at org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.pushToOperator(OperatorChain.java:641) at org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect(OperatorChain.java:616) at org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect(OperatorChain.java:596) at org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect(AbstractStreamOperator.java:730) at org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect(AbstractStreamOperator.java:708) at org.apache.flink.streaming.api.operators.StreamSourceContexts$ManualWatermarkContext.processAndCollectWithTimestamp(StreamSourceContexts.java:310) at org.apache.flink.streaming.api.operators.StreamSourceContexts$WatermarkContext.collectWithTimestamp(StreamSourceContexts.java:409) at org.apache.flink.streaming.connectors.kafka.internals.AbstractFetcher.emitRecordWithTimestamp(AbstractFetcher.java:408) at org.apache.flink.streaming.connectors.kafka.internal.KafkaFetcher.emitRecord(KafkaFetcher.java:185) at org.apache.flink.streaming.connectors.kafka.internal.KafkaFetcher.runFetchLoop(KafkaFetcher.java:150) at org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase.run(FlinkKafkaConsumerBase.java:715) at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:100) at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:63) at org.apache.flink.streaming.runtime.tasks.SourceStreamTask$LegacySourceFunctionThread.run(SourceStreamTask.java:196)


参考回答:

SQL 中数据下标是从1开始的,不是从0,所以会有数组越界问题。建议使用数组时通过 select arr[5] from T where CARDINALITY(arr) >= 5 这种方式防止数组访问越界。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/372255

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
6月前
|
SQL Java API
flink问题之state过期设置如何解决
Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。本合集提供有关Apache Flink相关技术、使用技巧和最佳实践的资源。
427 0
|
1月前
|
SQL 消息中间件 分布式计算
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
67 5
|
1月前
|
存储 SQL 分布式计算
大数据-127 - Flink State 04篇 状态原理和原理剖析:状态存储 Part2
大数据-127 - Flink State 04篇 状态原理和原理剖析:状态存储 Part2
20 0
|
1月前
|
存储 消息中间件 大数据
大数据-126 - Flink State 03篇 状态原理和原理剖析:状态存储 Part1
大数据-126 - Flink State 03篇 状态原理和原理剖析:状态存储 Part1
64 0
|
1月前
|
存储 SQL 分布式计算
大数据-125 - Flink State 02篇 状态原理和原理剖析:广播状态
大数据-125 - Flink State 02篇 状态原理和原理剖析:广播状态
45 0
|
3月前
|
消息中间件 应用服务中间件 API
Flink四大基石——3.State
Flink四大基石——3.State
51 1
|
3月前
|
SQL 流计算
Flink SQL 在快手实践问题之由于meta信息变化导致的state向前兼容问题如何解决
Flink SQL 在快手实践问题之由于meta信息变化导致的state向前兼容问题如何解决
49 1
|
6月前
|
SQL 分布式数据库 Apache
Flink问题之实现state定时输出如何解决
Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。本合集提供有关Apache Flink相关技术、使用技巧和最佳实践的资源。
|
6月前
|
存储 消息中间件 资源调度
Flink state 详解
Flink state 详解
71 0
|
存储 NoSQL Apache
Flink State 误用之痛,你中招了吗?
本文主要讨论一个问题:ValueState 中存 Map 与 MapState 有什么区别?如果不懂这两者的区别,而且使用 ValueState 中存大对象,生产环境很可能会出现以下问题:CPU 被打满、吞吐上不去。
Flink State 误用之痛,你中招了吗?

相关产品

  • 实时计算 Flink版
  • 下一篇
    无影云桌面