基于包围盒算法的三维点云数据压缩和曲面重建matlab仿真

简介: 基于包围盒算法的三维点云数据压缩和曲面重建matlab仿真

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
随着三维扫描技术的快速发展,三维点云数据在多个领域,如计算机视觉、机器人技术和逆向工程中得到了广泛应用。然而,大规模的点云数据不仅存储成本高,而且处理速度慢,这限制了其在实时应用中的使用。为了解决这个问题,本文提出了一种基于包围盒算法的三维点云数据压缩和曲面重建方法。该方法通过减少点的数量同时保留原始点云的主要特征,从而实现了高效的数据压缩和精确的曲面重建。

   三维点云是空间中一系列点的集合,每个点都有其特定的坐标(x, y, z)。这些点可以通过各种方式获得,例如激光扫描、立体视觉等。随着技术的进步,获取的点云数据越来越密集,导致数据量迅速增长。因此,如何有效地压缩这些数据并从中重建出曲面成为了一个重要的问题。在过去的几十年中,许多研究致力于点云数据的压缩和曲面重建。其中,一些方法基于体素网格进行空间划分,另一些则使用迭代的方法对点进行聚类。然而,这些方法在处理大规模、高密度的点云数据时往往效率低下。

   基于包围盒算法的压缩与重建分为三个步骤:包围盒构建、点云压缩和曲面重建。

3.1 包围盒构建
首先,我们为整个点云构建一个初始的包围盒。然后,递归地将这个包围盒划分为更小的子盒,直到满足某个停止条件(如子盒中的点数少于某个阈值)。每个子盒都包含了一部分点云数据。

3.2 点云压缩
在每个子盒中,我们选择一个代表点来代替该盒子中的所有点。代表点的选择可以基于多种策略,如盒子的中心点或点云的质心。通过这种方式,大量的点被少数几个代表点所替代,从而实现了数据的压缩。

数学上,假设一个子盒B包含n个点{p1, p2, ..., pn},每个点的坐标为(x, y, z)。该子盒的代表点Pr可以计算为:
(Pr = \frac{1}{n} \sum_{i=1}^{n} p_i)
这里,Pr是子盒中所有点的坐标平均值。

3.3 曲面重建
在得到压缩后的代表点后,我们使用这些点作为控制点来构建一个三角网格,从而近似原始点云的曲面。具体地,我们可以使用Delaunay三角剖分或Ball Pivoting算法来生成三角网格。

4.部分核心程序

XYZc    = zeros(X_w*Y_w*Z_h,3);
for i=1:X_w
    Xc = Xmin+LL*(i-0.5);
    for j=1:Y_w
        Yc = Ymin+LL*(j-0.5);
        for k=1:Z_h
            Zc = Zmin+LL*(k-0.5);
            XYZc((i-1)*Y_w*Z_h+(j-1)*Z_h+k,1)=Xc;
            XYZc((i-1)*Y_w*Z_h+(j-1)*Z_h+k,2)=Yc;
            XYZc((i-1)*Y_w*Z_h+(j-1)*Z_h+k,3)=Zc;
        end
    end
end
%中心点与各个点云之间的距离矩阵
Mdist=zeros(Rr,4);
for i=1:Rr
    Mdist(i,1)=X_w2(i);
    Mdist(i,2)=Y_w2(i);
    Mdist(i,3)=Z_h2(i);
    Mdist(i,4)=sqrt((XYZc((X_w2(i)-1)*Y_w*Z_h+(Y_w2(i)-1)*Z_h+Z_h2(i),1)-Data_3d(i,1))^2+...
                    (XYZc((X_w2(i)-1)*Y_w*Z_h+(Y_w2(i)-1)*Z_h+Z_h2(i),2)-Data_3d(i,2))^2+...
                    (XYZc((X_w2(i)-1)*Y_w*Z_h+(Y_w2(i)-1)*Z_h+Z_h2(i),3)-Data_3d(i,3))^2);
end
[Y,X_w,Y_w]=unique(Mdist(:,1:3),'rows');

X          =zeros(length(X_w),1);
for i=1:length(X_w)
    X(i)=max(Mdist(Y_w==i,4));
end
Y=[Y X];


Data_box = Y(:,1:3);
[t]      = MyCrust(Data_box);
[w]      = MyCrust(Data_3d);

%原三维点云曲面图
figure
subplot(121);
axis equal
trisurf(w,Data_3d(:,1),Data_3d(:,2),Data_3d(:,3),'facecolor','c','edgecolor','b') 
grid on
view(-45,30)
xlabel('X');
ylabel('Y');
zlabel('Z');         
title('原三维点云曲面图');

%通过包围盒算法的三维点云曲面图
subplot(122);
axis equal
trisurf(t,Data_box(:,1),Data_box(:,2),Data_box(:,3),'facecolor','c','edgecolor','b') 
grid on
view(-45,30)
xlabel('X');
ylabel('Y');
zlabel('Z');    
title('通过包围盒算法的三维点云曲面图');
相关文章
|
3天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
11天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
11天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
224 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
141 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
109 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
7月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)