电商数据采集之电商数据爬虫——电商数据采集API接口
电商数据爬虫背景
在如今这个网购风云从不间歇的时代,购物狂欢持续不断,一年一度的“6.18年中大促”、“11.11购物节”等等成为了网购电商平台的盛宴。在买买买的同时,“如何省钱?”成为了大家最关心的问题。
比价、返利、优惠券都是消费者在网购时的刚需,但在这些“优惠”背后已产生灰色地带。
图片图片
网络爬虫由于成本和门槛较低,成为常用的数据获取技术手段,在遵循网络法律规定的前提之下,进行电商网站数据源爬取来进行商业分析。那么本期《上进计划》给大家带来的项目就是通过爬虫技术,让大家掌握常用的数据采集方式。
图片
爬虫概述
Python爬虫是用Python编程语言实现的网络爬虫,主要用于网络数据的抓取和处理。相比于其他语言,Python是一门非常适合开发网络爬虫的编程语言,大量内置包,可以轻松实现网络爬虫功能。Python爬虫可以做的事情很多,如搜索引擎、采集数据、广告过滤等,Python爬虫还可以用于数据分析,在数据的抓取方面作用巨大!
图片图片
Python爬虫架构组成
1.URL管理器:管理待爬取的url集合和已爬取的url集合,传送待爬取的url给网页下载器;
2.网页下载器:爬取url对应的网页,存储成字符串,传送给网页解析器;
3.网页解析器:解析出有价值的数据,存储下来,同时补充url到URL管理器。
Python爬虫工作原理
Python爬虫通过URL管理器,判断是否有待爬URL,如果有待爬URL,通过调度器进行传递给下载器,下载URL内容,并通过调度器传送给解析器,解析URL内容,并将价值数据和新URL列表通过调度器传递给应用程序,并输出价值信息的过程。
Python之所以强大,一个重要的原因就是,拿来即用的代码库丰富!Python内置的urllib模块,用于访问网络资源。但是,它用起来比较麻烦,也缺少很多实用的高级功能,更好的方案是使用Requests,我们今天的主角就是Requests。
关于Requests
Requests 自我定义为 HTTP for Humans:让 HTTP 服务人类,或者说最人性化的 HTTP。言外之意,之前的那些 HTTP 库太过繁琐,都不是给人用的。(urllib 表示:怪我咯!)
尽管听上去有些自大,但实际上它的的确确配得上这个评价,用过的都说好。这真的是一个非常值得使用的库,开发效率确实有很大的提升。
Requests提供了官方中文文档,其中包括了很清晰的“快速上手”和详尽的高级用法和接口指南。以至于我觉得再把文档里面内容搬运过来都是一种浪费。对于 Requests,要做的仅仅是两件事:
Ø 告诉你有这样一个工具,用来开发爬虫很轻松
Ø 告诉你它的官方文档很好,你去读就可以了
Requests的使用
1、pip安装Requests
pip install requests
2、示例:一行代码使用Requests
导入 Requests 模块
import requests
然后,尝试获取某个网页。本例子中,我们来获取Github 的公共时间线
r = requests.get('https://api.github.com/events')
3、Requests常用调用(get、post)
GET 变量接受所有以 get 方式发送的请求,及浏览器地址栏中的 ?之后的内容。
POST 变量接受所有以 post 方式发送的请求,例如,一个 form 以 method=post 提交
REQUEST 支持两种方式发送过来的请求,即 post 和 get 它都可以接受, 显示不显示要看传递方法,get 会显示在 url 中(有字符数限制),post 不会在 url 中显示,可以传递任意多的数据(只要服务器支持)。
4、Requests返回参数
r.status_code HTTP请求的返回状态,200表示连接成功,404表示失败
r.text HTTP响应内容的字符串形式,即url对应的页面内容
r.encoding 从HTTP header中猜测的响应内容编码方式
r.apparent_encoding 从内容中分析出的响应内容编码方式(备选编码方式)
r.content HTTP响应内容的二进制形式
关于Requests作者的冷知识
Requests的作者叫肯尼斯·赖茨(Kenneth Reitz),现就职于知名云服务提供商 DigitalOcean,曾是云计算平台 Heroku 的 Python 架构师,目前 Github 上 Python 排行榜第一的用户。(star 数超过了包括 google、tensorflow、django 等账号)
但他被更多路人所熟知的,恐怕还是他从一名技术肥宅逆袭成为文艺高富帅的励志故事。
图片