【Elasticsearch专栏 03】深入探索:Elasticsearch倒排索引是如何提高搜索效率的

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: 倒排索引通过直接关联文档内容,将关键词映射到相关文档,减少扫描范围,并使用高效数据结构快速查找和匹配关键词,从而显著提高搜索效率。此外,它支持复杂查询操作和搜索结果优化,进一步提高搜索的准确性和用户满意度。

Elasticsearch倒排索引是如何提高搜索效率的?

倒排索引之所以能够提高搜索效率,关键在于其独特的构建方式和数据结构设计。下面,我将对倒排索引的工作原理进行深层解读,并阐述其如何显著提高搜索效率。

01 倒排索引的工作原理

  1. 分词与索引构建

    首先,搜索引擎会对文档内容进行分词处理,将文本拆分成独立的单词或词组。然后,为每个单词或词组创建一个倒排列表,该列表记录了包含该单词或词组的所有文档的ID和该单词在文档中的位置信息(如偏移量、词频等)。

  2. 索引存储与优化

    接下来,搜索引擎会将这些倒排列表存储在磁盘上,并进行一系列的优化操作,如压缩、合并等,以减少存储空间和提高查询效率。这些优化操作使得倒排索引在保持高效查询性能的同时,也具有良好的可扩展性和稳定性。

  3. 查询处理

    当用户发起搜索请求时,搜索引擎会对查询语句进行分词处理,并生成一个查询词列表。然后,根据这个查询词列表在倒排索引中查找对应的倒排列表,并将这些倒排列表进行交集运算,以找到同时包含所有查询词的文档。最后,根据一定的排序算法对结果进行排序,并返回给用户。

02 倒排索引如何提高搜索效率

  1. 减少扫描范围

    正排索引需要扫描整个文档集来确定是否包含查询关键词,而倒排索引则可以直接定位到与查询关键词相关的文档,从而大大减少了扫描范围,提高了搜索效率。

  2. 快速查找与匹配

    倒排索引使用高效的数据结构(如B-Tree、哈希表等)来存储和查询倒排列表,使得关键词的查找和匹配操作变得非常快速。这种快速查找与匹配的能力是倒排索引提高搜索效率的关键。

  3. 支持复杂查询

    倒排索引不仅可以支持简单的关键词匹配查询,还可以方便地支持布尔查询、短语查询、模糊查询等复杂查询操作。这些复杂查询操作在正排索引中难以实现或效率较低,而在倒排索引中则可以轻松实现并保持较高的效率。

  4. 优化搜索结果

    通过对倒排索引中的关键词进行权重设置、停用词过滤等操作,搜索引擎可以优化搜索结果,提高搜索的准确性和用户满意度。这些优化操作在正排索引中难以实现或效果有限,而在倒排索引中则可以发挥出更大的作用。

  5. 分布式处理与负载均衡

    在大规模搜索引擎中,倒排索引可以很容易地进行分布式处理和负载均衡。通过将倒排索引分片并存储在多个节点上,可以实现高效的并行处理和负载均衡,进一步提高搜索效率。

03 小结

综上所述,倒排索引通过其独特的构建方式和数据结构设计,实现了高效、快速、灵活的搜索操作。相较于正排索引,倒排索引在搜索效率、存储、扩展性、查询复杂性等方面都具有显著优势,因此被广泛应用于现代搜索引擎中。

相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
相关文章
|
1月前
|
缓存 监控 前端开发
顺企网 API 开发实战:搜索 / 详情接口从 0 到 1 落地(附 Elasticsearch 优化 + 错误速查)
企业API开发常陷参数、缓存、错误处理三大坑?本指南拆解顺企网双接口全流程,涵盖搜索优化、签名验证、限流应对,附可复用代码与错误速查表,助你2小时高效搞定开发,提升响应速度与稳定性。
|
1月前
|
存储 Linux iOS开发
Elasticsearch Enterprise 9.1.5 发布 - 分布式搜索和分析引擎
Elasticsearch Enterprise 9.1.5 (macOS, Linux, Windows) - 分布式搜索和分析引擎
245 0
|
2月前
|
JSON 监控 Java
Elasticsearch 分布式搜索与分析引擎技术详解与实践指南
本文档全面介绍 Elasticsearch 分布式搜索与分析引擎的核心概念、架构设计和实践应用。作为基于 Lucene 的分布式搜索引擎,Elasticsearch 提供了近实时的搜索能力、强大的数据分析功能和可扩展的分布式架构。本文将深入探讨其索引机制、查询 DSL、集群管理、性能优化以及与各种应用场景的集成,帮助开发者构建高性能的搜索和分析系统。
256 0
|
6月前
|
存储 安全 Linux
Elasticsearch Enterprise 9.0 发布 - 分布式搜索和分析引擎
Elasticsearch Enterprise 9.0 (macOS, Linux, Windows) - 分布式搜索和分析引擎
302 0
|
6月前
|
存储 Linux iOS开发
Elasticsearch Enterprise 8.18 发布 - 分布式搜索和分析引擎
Elasticsearch Enterprise 8.18 (macOS, Linux, Windows) - 分布式搜索和分析引擎
252 0
|
11月前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案
643 3
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
|
10月前
|
人工智能 自然语言处理 搜索推荐
云端问道12期实操教学-构建基于Elasticsearch的企业级AI搜索应用
本文介绍了构建基于Elasticsearch的企业级AI搜索应用,涵盖了从传统关键词匹配到对话式问答的搜索形态演变。阿里云的AI搜索产品依托自研和开源(如Elasticsearch)引擎,提供高性能检索服务,支持千亿级数据毫秒响应。文章重点描述了AI搜索的三个核心关键点:精准结果、语义理解、高性能引擎,并展示了架构升级和典型应用场景,包括智能问答、电商导购、多模态图书及商品搜索等。通过实验部分,详细演示了如何使用阿里云ES搭建AI语义搜索Demo,涵盖模型创建、Pipeline配置、数据写入与检索测试等步骤,同时介绍了相关的计费模式。
334 3
|
10月前
|
人工智能 算法 API
构建基于 Elasticsearch 的企业级 AI 搜索应用
本文介绍了基于Elasticsearch构建企业级AI搜索应用的方案,重点讲解了RAG(检索增强生成)架构的实现。通过阿里云上的Elasticsearch AI搜索平台,简化了知识库文档抽取、文本切片等复杂流程,并结合稠密和稀疏向量的混合搜索技术,提升了召回和排序的准确性。此外,还探讨了Elastic的向量数据库优化措施及推理API的应用,展示了如何在云端高效实现精准的搜索与推理服务。未来将拓展至多模态数据和知识图谱,进一步提升RAG效果。
395 1
|
10月前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案。
820 5
|
11月前
|
搜索推荐 API 定位技术
一文看懂Elasticsearch的技术架构:高效、精准的搜索神器
Elasticsearch 是一个基于 Lucene 的开源搜索引擎,以其强大的全文本搜索功能和快速的倒排索引技术著称。它不仅支持数字、文本、地理位置等多类型数据,还提供了可调相关度分数、高级查询 DSL 等功能。Elasticsearch 的核心技术流程包括数据导入、解析、索引化、查询处理、得分计算及结果返回,确保高效处理大规模数据并提供准确的搜索结果。通过 RESTful API、Logstash 和 Filebeat 等工具,Elasticsearch 可以从多种数据源中导入和解析数据,支持复杂的查询需求。
601 0

热门文章

最新文章

下一篇
oss云网关配置