Flink CDC(Change Data Capture)是一种用于捕获数据库变更的技术

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: Flink CDC(Change Data Capture)是一种用于捕获数据库变更的技术

如果Flink CDC的Oraclecdc JdbcIncrementalSource捕获不到数据也不报错,可能是以下原因:

检查数据库连接是否正常,可以尝试使用其他工具连接数据库,确认连接是否成功。

检查JdbcIncrementalSource的配置是否正确,特别是表名和字段名是否正确。

检查Flink任务的并行度是否设置正确,如果并行度设置过高,可能会导致数据无法正常消费。

检查Flink任务的checkpoint是否配置正确,如果checkpoint配置不正确,可能会导致数据无法正常消费。

检查Oracle数据库的日志,查看是否有异常或错误信息。

如果以上方法都无法解决问题,可以联系Flink社区或Oracle技术支持寻求帮助。

Flink CDC(Change Data Capture)是一种用于捕获数据库变更的技术,它能够实时地监控数据库的变化并将这些变化数据同步到下游系统。至于内置函数的添加时间,并没有具体的时间表或发布日期公开。通常,随着Flink版本更新,会不断地有新的功能和内置函数被添加进来,以增强其处理能力和易用性。

如果您想了解Flink CDC中特定内置函数的添加时间,建议查看Flink的官方文档或者跟踪其版本更新日志,这些通常会包含新功能的引入信息。同时,您也可以关注Flink社区的讨论和发布公告,以获取最新的功能更新动态。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
5天前
|
Java 关系型数据库 数据库
怎么保障数据库在凭据变更过程中的安全与稳定?
本文介绍了在Spring应用中实现RDS数据源账密运行时轮转的方案,通过集成KMS与Nacos,实现数据库凭据的加密托管、动态更新与无缝切换,保障应用在凭据变更过程中的安全与稳定。适用于使用Java语言开发的Spring Boot或Spring Cloud应用,支持多种数据库类型,如MySQL、SQL Server、PostgreSQL等。
|
2月前
|
人工智能 运维 数据挖掘
瑶池数据库Data+AI驱动的全栈智能实践开放日回顾
阿里云瑶池数据库重磅推出“Data+AI能力家族”,包括DTS AI数据准备、Data Agent系列智能体及DMS MCP统一数据访问服务,重构数据与AI协同边界。通过智能化工具链,覆盖数据全生命周期,提升企业数据开发、分析、治理与运维效率,降低技术门槛,激活数据资产价值,助力企业迈向全栈智能新时代。
|
3月前
|
人工智能 运维 数据挖掘
瑶池数据库开放日:全新发布Data+AI能力家族,赋能企业全栈智能实践
近日,阿里云瑶池数据库生态工具产品重磅升级,推出“Data+AI能力家族”,并举办了为期3天的全栈智能实践开放日活动。发布会上首次公开了 “Data Agent for Analytics、Data Agent for Meta、DAS Agent”等瑶池数据库Data Agent系列能力,以工具智能化 × 智能化工具的双引擎重构数据与AI的协同边界,揭秘AI时代数据价值释放的全新路径。
|
7月前
|
数据管理 关系型数据库 MySQL
数据管理服务DMS支持MySQL数据库的无锁结构变更
本文介绍了使用Sysbench准备2000万数据并进行全表字段更新的操作。通过DMS的无锁变更功能,可在不锁定表的情况下完成结构修改,避免了传统方法中可能产生的锁等待问题。具体步骤包括:准备数据、提交审批、执行变更及检查表结构,确保变更过程高效且不影响业务运行。
366 2
|
10月前
|
存储 监控 数据处理
flink 向doris 数据库写入数据时出现背压如何排查?
本文介绍了如何确定和解决Flink任务向Doris数据库写入数据时遇到的背压问题。首先通过Flink Web UI和性能指标监控识别背压,然后从Doris数据库性能、网络连接稳定性、Flink任务数据处理逻辑及资源配置等方面排查原因,并通过分析相关日志进一步定位问题。
735 61
|
10月前
|
JSON Java 关系型数据库
Java更新数据库报错:Data truncation: Cannot create a JSON value from a string with CHARACTER SET 'binary'.
在Java中,使用mybatis-plus更新实体类对象到mysql,其中一个字段对应数据库中json数据类型,更新时报错:Data truncation: Cannot create a JSON value from a string with CHARACTER SET 'binary'.
1080 4
Java更新数据库报错:Data truncation: Cannot create a JSON value from a string with CHARACTER SET 'binary'.
|
10月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
494 9
|
20天前
|
安全 关系型数据库 MySQL
MySQL安全最佳实践:保护你的数据库
本文深入探讨了MySQL数据库的安全防护体系,涵盖认证安全、访问控制、网络安全、数据加密、审计监控、备份恢复、操作系统安全、应急响应等多个方面。通过具体配置示例,为企业提供了一套全面的安全实践方案,帮助强化数据库安全,防止数据泄露和未授权访问,保障企业数据资产安全。
|
5天前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
38 3

热门文章

最新文章