Flink cdc报错问题之内存不足报错如何解决

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: Flink CDC报错指的是使用Apache Flink的Change Data Capture(CDC)组件时遇到的错误和异常;本合集将汇总Flink CDC常见的报错情况,并提供相应的诊断和解决方法,帮助用户快速恢复数据处理任务的正常运行。

问题一:flink-cdc 从数据库插入hudi表一万多条数据的过程中报错了,是不是要设置什么?

flink-cdc 从数据库插入hudi表一万多条数据的过程中报错了 “内存不足错误:超过GC开销限制 OutOfMemoryError: GC overhead limit exceeded” 明明我有32G内存,也不够吗,是不是要设置什么?



参考答案:

试试把数据刷出去的时间缩小,条数缩小。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/491982?spm=a2c6h.13066369.question.26.4d426d0cjMFB0d



问题二:flink-cdc 从数据库插入hudi表一万多条数据的过程中报错了“内存不足错误

flink-cdc 从数据库插入hudi表一万多条数据的过程中报错了“内存不足错误:超过GC开销限制 OutOfMemoryError: GC overhead limit exceeded”明明我有32G内存,也不够吗,是不是要设置什么



参考答案:

这么大的内存怎么都够了你用到32gwebui进去看看。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/492319?spm=a2c6h.13066369.question.27.4d426d0cI18C5o



问题三:请大家看一下以下问题是什么原因?

请问我使用Flink cdc 读mysql 然后jdbc 写入 mysql。想用upsert模式。但是使用官网上的 on duplicate key update 关键字 Flink报错说解析不了。请问是什么原因呢?FLink 1.13.x



参考答案:

flink,表写主键的话,自己就是upsert了。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/494720?spm=a2c6h.13066369.question.30.4d426d0cwk1Gtr



问题四:使用flink cdc监听一个mysql表的binlog,debezuim反序列化日志 报错,为什么

使用flink cdc监听一个mysql表的binlog,但是现在再该库下新增了一个表,但是由于字段类型不对,然后修改了字段,然后就导致 debezuim反序列化日志 报错,为什么?



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/484571?spm=a2c6h.13066369.question.31.4d426d0cY4aPfA



问题五:有没有遇到过使用flink-connector-mysql-cdc(2.3.0),flink版本:1.14.6 ,消费mysql的binlog数据有丢失数据的情况,找不出原因,程序不报错,莫名奇妙就是SCN少了,就缺数据了

有没有遇到过使用flink-connector-mysql-cdc(2.3.0),flink版本:1.14.6 ,消费mysql的binlog数据有丢失数据的情况,找不出原因,程序不报错,莫名奇妙就是SCN少了,就缺数据了



参考答案:

我们测试的oracle cdc 有丢。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/495494?spm=a2c6h.13066369.question.30.4d426d0cgnrDUR

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
1月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
891 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
4月前
|
数据采集 SQL canal
Amoro + Flink CDC 数据融合入湖新体验
本文总结了货拉拉高级大数据开发工程师陈政羽在Flink Forward Asia 2024上的分享,聚焦Flink CDC在货拉拉的应用与优化。内容涵盖CDC应用现状、数据入湖新体验、入湖优化及未来规划。文中详细分析了CDC在多业务场景中的实践,包括数据采集平台化、稳定性建设,以及面临的文件碎片化、Schema演进等挑战。同时介绍了基于Apache Amoro的湖仓融合架构,通过自优化服务解决小文件问题,提升数据新鲜度与读写平衡。未来将深化Paimon与Amoro的结合,打造更高效的入湖生态与自动化优化方案。
241 1
Amoro + Flink CDC 数据融合入湖新体验
|
4月前
|
SQL 关系型数据库 MySQL
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
Apache Flink CDC 3.4.0 版本正式发布!经过4个月的开发,此版本强化了对高频表结构变更的支持,新增 batch 执行模式和 Apache Iceberg Sink 连接器,可将数据库数据全增量实时写入 Iceberg 数据湖。51位贡献者完成了259次代码提交,优化了 MySQL、MongoDB 等连接器,并修复多个缺陷。未来 3.5 版本将聚焦脏数据处理、数据限流等能力及 AI 生态对接。欢迎下载体验并提出反馈!
833 1
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
|
5月前
|
SQL API Apache
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
679 12
Dinky 和 Flink CDC 在实时整库同步的探索之路
|
3月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
6月前
|
Oracle 关系型数据库 Java
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
本文介绍通过Flink CDC实现Oracle数据实时同步至崖山数据库(YashanDB)的方法,支持全量与增量同步,并涵盖新增、修改和删除的DML操作。内容包括环境准备(如JDK、Flink版本等)、Oracle日志归档启用、用户权限配置、增量日志记录设置、元数据迁移、Flink安装与配置、生成Flink SQL文件、Streampark部署,以及创建和启动实时同步任务的具体步骤。适合需要跨数据库实时同步方案的技术人员参考。
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
|
6月前
|
关系型数据库 MySQL 数据库
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
TIS 是一款基于Web-UI的开源大数据集成工具,通过与人大金仓Kingbase的深度整合,提供高效、灵活的实时数据集成方案。它支持增量数据监听和实时写入,兼容MySQL、PostgreSQL和Oracle模式,无需编写复杂脚本,操作简单直观,特别适合非专业开发人员使用。TIS率先实现了Kingbase CDC连接器的整合,成为业界首个开箱即用的Kingbase CDC数据同步解决方案,助力企业数字化转型。
1141 5
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
|
27天前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
356 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
12月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。

相关产品

  • 实时计算 Flink版