NNLM - 神经网络语言模型 | 高效的单词预测工具

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
语种识别,语种识别 100万字符
NLP 自学习平台,3个模型定制额度 1个月
简介: NNLM - 神经网络语言模型 | 高效的单词预测工具

本系列将持续更新NLP相关模型与方法,欢迎关注!

简介

神经网络语言模型(NNLM)是一种人工智能模型,用于学习预测词序列中下一个词的概率分布。它是自然语言处理(NLP)中的一个强大工具,在机器翻译、语音识别和文本生成等领域都有广泛的应用。

Paper - A Neural Probabilistic Language Model(2003)

原理

NNLM 首先学习词的分布式表示,也称为词嵌入,它捕捉了词之间的语义相似性。然后将这些嵌入输入到神经网络模型中,通常是一个前馈神经网络或循环神经网络(RNN),该模型根据前面的词提供的上下文来学习预测序列中的下一个词。

例如,给定句子“猫在坐在”,NNLM 可能会高概率地预测下一个词为“地板”,因为这是给定上下文的常见补充。

示例

假设我们有一个大型的文本语料库,比如一系列新闻文章。我们可以对这些数据进行 NNLM 训练,以学习单词和它们上下文之间的关系。训练完成后,模型可以生成连贯和与上下文相关的句子。

例如,如果我们提供初始短语“人工智能是”,NNLM 可能生成以下完成句子:“人工智能正在改变行业,重塑未来的工作。”

应用

  1. 机器翻译: NNLM 在机器翻译系统中发挥作用,通过预测源语言上下文的下一个词来生成流畅且准确的翻译。
  2. 语音识别: NNLM 在语音识别系统中起着至关重要的作用,通过从口语表达中预测最可能的词序列。
  3. 文本生成: NNLM 在各种文本生成任务中使用,包括对话生成、故事生成和内容摘要,在这些任务中,它们基于给定的输入生成连贯且与上下文相关的文本。
  4. 语言建模: NNLM 作为语言建模任务的基础,用于估计在给定上下文中序列单词发生的概率。这在拼写检查、自动完成和语法错误检测等任务中特别有用。

Code

# code by Tae Hwan Jung @graykode
import torch
import torch.nn as nn
import torch.optim as optim

def make_batch():
    input_batch = []
    target_batch = []

    for sen in sentences:
        word = sen.split() # space tokenizer
        input = [word_dict[n] for n in word[:-1]] # create (1~n-1) as input
        target = word_dict[word[-1]] # create (n) as target, We usually call this 'casual language model'

        input_batch.append(input)
        target_batch.append(target)

    return input_batch, target_batch

# Model
class NNLM(nn.Module):
    def __init__(self):
        super(NNLM, self).__init__()
        self.C = nn.Embedding(n_class, m)
        self.H = nn.Linear(n_step * m, n_hidden, bias=False)
        self.d = nn.Parameter(torch.ones(n_hidden))
        self.U = nn.Linear(n_hidden, n_class, bias=False)
        self.W = nn.Linear(n_step * m, n_class, bias=False)
        self.b = nn.Parameter(torch.ones(n_class))

    def forward(self, X):
        X = self.C(X) # X : [batch_size, n_step, m]
        X = X.view(-1, n_step * m) # [batch_size, n_step * m]
        tanh = torch.tanh(self.d + self.H(X)) # [batch_size, n_hidden]
        output = self.b + self.W(X) + self.U(tanh) # [batch_size, n_class]
        return output

if __name__ == '__main__':
    n_step = 2 # number of steps, n-1 in paper
    n_hidden = 2 # number of hidden size, h in paper
    m = 2 # embedding size, m in paper

    sentences = ["i like dog", "i love coffee", "i hate milk"]

    word_list = " ".join(sentences).split()
    word_list = list(set(word_list))
    word_dict = {
   
   w: i for i, w in enumerate(word_list)}
    number_dict = {
   
   i: w for i, w in enumerate(word_list)}
    n_class = len(word_dict)  # number of Vocabulary

    model = NNLM()

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)

    input_batch, target_batch = make_batch()
    input_batch = torch.LongTensor(input_batch)
    target_batch = torch.LongTensor(target_batch)

    # Training
    for epoch in range(5000):
        optimizer.zero_grad()
        output = model(input_batch)

        # output : [batch_size, n_class], target_batch : [batch_size]
        loss = criterion(output, target_batch)
        if (epoch + 1) % 1000 == 0:
            print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

        loss.backward()
        optimizer.step()

    # Predict
    predict = model(input_batch).data.max(1, keepdim=True)[1]

    # Test
    print([sen.split()[:2] for sen in sentences], '->', [number_dict[n.item()] for n in predict.squeeze()])

总的来说,神经网络语言模型(NNLM)是自然语言处理中的强大工具,利用神经网络架构来预测文本序列中的下一个词。从机器翻译到文本生成,NNLM 继续推动人工智能在理解和生成人类语言方面的能力。

相关文章
|
2月前
|
安全 网络协议 算法
Nmap网络扫描工具详细使用教程
Nmap 是一款强大的网络发现与安全审计工具,具备主机发现、端口扫描、服务识别、操作系统检测及脚本扩展等功能。它支持多种扫描技术,如 SYN 扫描、ARP 扫描和全端口扫描,并可通过内置脚本(NSE)进行漏洞检测与服务深度枚举。Nmap 还提供防火墙规避与流量伪装能力,适用于网络管理、渗透测试和安全研究。
466 1
|
3月前
|
Web App开发 API 虚拟化
Cisco Modeling Labs (CML) 2.9.0 - 网络仿真工具
Cisco Modeling Labs (CML) 2.9.0 - 网络仿真工具
305 15
Cisco Modeling Labs (CML) 2.9.0 - 网络仿真工具
|
4月前
|
监控 安全 网络安全
网络安全工具及其使用方法:保护数字安全的第一道防线
在信息时代,网络攻击变得日益复杂且频繁,保护个人和企业数据安全的重要性日益凸显。幸运的是,各种网络安全工具为用户提供了有效的防护手段。从防火墙到密码管理器,这些工具覆盖了威胁检测、攻击防御和数据保护的方方面面。本文将介绍几款常用的网络安全工具,并提供其使用方法,以帮助您构建强大的网络安全防线。
197 1
|
4月前
|
监控 数据可视化 Java
VMware Aria Operations for Networks 6.14 - 网络和应用监控工具
VMware Aria Operations for Networks 6.14 - 网络和应用监控工具
111 0
VMware Aria Operations for Networks 6.14 - 网络和应用监控工具
|
5月前
|
运维 监控 Linux
网络延迟监测工具选择(第一篇)
**WGCLOUD**是一款开源免费的跨平台运维监控工具,支持Windows、Linux、MacOS等系统,具备网络延迟监测功能。其内置的**PING监测**模块可实时ping目标IP,图形化展示延迟趋势,并在目标IP不可达时发送告警通知。支持分组管理,操作简单便捷,适合运维人员高效监控网络状态。
|
10月前
|
数据采集 人工智能 自然语言处理
FireCrawl:开源 AI 网络爬虫工具,自动爬取网站及子页面内容,预处理为结构化数据
FireCrawl 是一款开源的 AI 网络爬虫工具,专为处理动态网页内容、自动爬取网站及子页面而设计,支持多种数据提取和输出格式。
3681 71
FireCrawl:开源 AI 网络爬虫工具,自动爬取网站及子页面内容,预处理为结构化数据
|
7月前
|
存储 监控 算法
基于 Python 哈希表算法的局域网网络监控工具:实现高效数据管理的核心技术
在当下数字化办公的环境中,局域网网络监控工具已成为保障企业网络安全、确保其高效运行的核心手段。此类工具通过对网络数据的收集、分析与管理,赋予企业实时洞察网络活动的能力。而在其运行机制背后,数据结构与算法发挥着关键作用。本文聚焦于 PHP 语言中的哈希表算法,深入探究其在局域网网络监控工具中的应用方式及所具备的优势。
240 7
|
10月前
|
Linux 网络性能优化 网络安全
Linux(openwrt)下iptables+tc工具实现网络流量限速控制(QoS)
通过以上步骤,您可以在Linux(OpenWrt)系统中使用iptables和tc工具实现网络流量限速控制(QoS)。这种方法灵活且功能强大,可以帮助管理员有效管理网络带宽,确保关键业务的网络性能。希望本文能够为您提供有价值的参考。
1788 28
|
11月前
|
存储 安全 物联网
浅析Kismet:无线网络监测与分析工具
Kismet是一款开源的无线网络监测和入侵检测系统(IDS),支持Wi-Fi、Bluetooth、ZigBee等协议,具备被动监听、实时数据分析、地理定位等功能。广泛应用于安全审计、网络优化和频谱管理。本文介绍其安装配置、基本操作及高级应用技巧,帮助用户掌握这一强大的无线网络安全工具。
908 9
浅析Kismet:无线网络监测与分析工具
|
10月前
|
网络协议 Unix Linux
深入解析:Linux网络配置工具ifconfig与ip命令的全面对比
虽然 `ifconfig`作为一个经典的网络配置工具,简单易用,但其功能已经不能满足现代网络配置的需求。相比之下,`ip`命令不仅功能全面,而且提供了一致且简洁的语法,适用于各种网络配置场景。因此,在实际使用中,推荐逐步过渡到 `ip`命令,以更好地适应现代网络管理需求。
454 11

热门文章

最新文章