基于yolov2深度学习网络的人员跌倒检测识别matlab仿真

简介: 基于yolov2深度学习网络的人员跌倒检测识别matlab仿真

1.算法运行效果图预览
1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
跌倒是一种常见的健康风险,特别是在老年人和患有某些疾病的人群中。及时检测跌倒并采取相应措施对于降低伤害风险至关重要。近年来,深度学习在图像处理和计算机视觉领域取得了显著进展,使得基于视频的人员跌倒检测成为可能。本文介绍了一种基于YOLOv2深度学习网络的人员跌倒检测识别方法,并详细阐述了其原理。YOLO系列算法是一种基于深度学习的实时目标检测算法,具有速度快、精度高等优点。YOLOv2是YOLO系列的第二代算法,相比于第一代算法,在速度和精度上都有所提升。此外,卷积神经网络(CNN)是深度学习中常用的模型之一,具有强大的特征提取能力。因此,本文选择YOLOv2和CNN作为打电话行为检测的基础算法和模型。

3.1 YOLOv2深度学习网络
YOLO(You Only Look Once)是一种基于深度学习的目标检测算法,它将目标检测任务转化为一个回归问题,实现了端到端的训练。

e855832c37f3f6a4750869368dbe8402_82780907_202402132220050892891483_Expires=1707834605&Signature=UfSw12ez%2BuGJg%2B6eALgrrfZBAAw%3D&domain=8.png

YOLOv2是YOLO的改进版,主要在以下几个方面进行了优化:

   批归一化(Batch Normalization):在每个卷积层后添加批归一化层,有助于改善模型的收敛速度和泛化性能。
   多尺度训练(Multi-Scale Training):在训练过程中,每隔一定的迭代次数就改变输入图像的尺寸,使模型能够适应不同尺度的目标。
   高分辨率分类器(High Resolution Classifier):在ImageNet数据集上预训练一个高分辨率的分类器,用于提高细粒度检测的精度。
   先验框(Anchor Boxes):引入先验框的概念,根据数据集的目标尺寸分布来设定合适的先验框尺寸和数量。
  损失函数(Loss Function):采用交叉熵损失和均方误差损失的加权和作为损失函数,以平衡分类和定位任务的性能。

3.2 人员跌倒检测识别原理
基于YOLOv2深度学习网络的人员跌倒检测识别方法主要包括以下几个步骤:

    数据预处理:对输入的视频进行分帧处理,将视频转化为一系列连续的图像帧。对图像帧进行必要的预处理操作,如缩放、裁剪等,以适应模型的输入要求。
    模型训练:使用标注好的跌倒数据集对YOLOv2模型进行训练。标注数据包括目标的位置信息和类别信息(跌倒或非跌倒)。通过优化损失函数来更新模型的参数,使模型逐渐学习到从图像中识别跌倒目标的能力。
   目标检测:将训练好的模型应用于测试数据,对每一张图像进行目标检测。YOLOv2模型会输出每个目标的位置信息和类别信息,以及相应的置信度分数。通过设置合适的置信度阈值,可以筛选出置信度较高的目标作为可能的跌倒事件。
   后处理:对筛选出的可能跌倒事件进行进一步的分析和处理。例如,可以使用时间序列分析方法来检测连续帧中的异常动作模式,从而提高跌倒检测的准确性。此外,还可以使用滑动窗口方法对连续帧进行检测结果的融合,以提高检测的鲁棒性。

4.部分核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')
load yolov2.mat% 加载训练好的目标检测器
img_size= [224,224];
imgPath = 'train/';        % 图像库路径
imgDir  = dir([imgPath '*.jpg']); % 遍历所有jpg格式文件
cnt     = 0;
for i = 1:40          % 遍历结构体就可以一一处理图片了
    i
    if mod(i,8)==1
       figure
    end
    cnt     = cnt+1;
    subplot(2,4,cnt); 
    img = imread([imgPath imgDir(i).name]); %读取每张图片 
    I               = imresize(img,img_size(1:2));
    [bboxes,scores] = detect(detector,I,'Threshold',0.15);
    if ~isempty(bboxes) % 如果检测到目标
        [Vs,Is] = max(scores);

        I = insertObjectAnnotation(I,'rectangle',bboxes(Is,:),Vs,LineWidth=3);% 在图像上绘制检测结果
    end
    subplot(2,4,cnt); 
    imshow(I, []);  % 显示带有检测结果的图像

    pause(0.01);% 等待一小段时间,使图像显示更流畅
    if cnt==8
       cnt=0;
    end
end
相关文章
|
1月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
129 5
|
21天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
60 31
|
27天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
2月前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
2月前
|
机器学习/深度学习 PyTorch TensorFlow
使用Python实现智能食品质量检测的深度学习模型
使用Python实现智能食品质量检测的深度学习模型
171 1
|
2月前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
87 7
|
2月前
|
机器学习/深度学习 传感器 算法
行人闯红灯检测:基于计算机视觉与深度学习的智能交通解决方案
随着智能交通系统的发展,传统的人工交通违法判断已难以满足需求。本文介绍了一种基于计算机视觉与深度学习的行人闯红灯自动检测系统,涵盖信号灯状态检测、行人检测与跟踪、行为分析及违规判定与报警四大模块,旨在提升交通管理效率与安全性。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
23天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
61 17
下一篇
开通oss服务