AI Earth ——开发者模式案例9:OpenAPI调用AI识别能力

简介: AI Earth ——开发者模式案例9:OpenAPI调用AI识别能力

OpenAPI 调用 AI 识别能力

初始化环境

阿里云账号的 AccessKey IDAccessKey Secret 可以从 AccessKey 管理 获取。

AccessKey IDAccessKey Secret 属于您的个人敏感信息,请妥善保管,谨防泄露。

import time
from Tea.exceptions import TeaException
from alibabacloud_tea_openapi import models
from alibabacloud_aiearth_engine20220609.models import *
from alibabacloud_aiearth_engine20220609.client import Client
config = models.Config(
    # 您的AccessKey ID,
    access_key_id='*请替换*',
    # 您的AccessKey Secret,
    access_key_secret='*请替换*',
    # 地域ID
    region_id='cn-hangzhou',
    # 访问的域名
    endpoint='aiearth-engine.cn-hangzhou.aliyuncs.com'
)
client = Client(config)

提交AI解译任务

data_id 的获取,可以通过 项目数据 的引用或 我的数据 的引用获取。

支持的AI解译任务类型(即 app 参数)、置信度阈值等,请参考 OpenAPI 指南

try:
    createAIJobRequest = CreateAIJobRequest()
    createAIJobRequest.job_name = '*请替换*'
    createAIJobRequest.app = '*请替换*'
    createAIJobRequest.area_threshold = 0
    createAIJobRequest.confidence = 10
    createAIJobRequestInputs = CreateAIJobRequestInputs()
    createAIJobRequestInputs.idx = 1
    createAIJobRequestInputsSrc = CreateAIJobRequestInputsSrc()
    createAIJobRequestInputsSrc.data_id = '*请替换*'
    createAIJobRequestInputs.src = createAIJobRequestInputsSrc
    createAIJobRequest.inputs = [createAIJobRequestInputs]
    aijob: CreateAIJobResponse = client.create_aijob(createAIJobRequest)
    print(aijob.body)
    jobId = aijob.body.jobs[0].job_id
except TeaException as e:
    # 打印整体的错误输出
    print(e)
    # 打印错误码
    print(e.code)
    # 打印错误信息,错误信息中包含
    print(e.message)
    # 打印服务端返回的具体错误内容
    print(e.data)

查询 AI 解译任务

try:
    getJobsRequest = GetJobsRequest()
    getJobsRequest.job_ids = [jobId]
    jobs: GetJobsResponse = client.get_jobs(getJobsRequest)
    print(jobs.body)
except TeaException as e:
    # 打印整体的错误输出
    print(e)
    # 打印错误码
    print(e.code)
    # 打印错误信息,错误信息中包含
    print(e.message)
    # 打印服务端返回的具体错误内容
    print(e.data)

停止 AI 解译任务

try:
    deleteJobsRequest = DeleteJobsRequest()
    deleteJobsRequest.job_ids = [jobId]
    del_jobs: DeleteJobsResponse = client.delete_jobs(deleteJobsRequest)
    print(del_jobs.body)
except TeaException as e:
    # 打印整体的错误输出
    print(e)
    # 打印错误码
    print(e.code)
    # 打印错误信息,错误信息中包含
    print(e.message)
    # 打印服务端返回的具体错误内容
    print(e.data)
相关文章
|
13天前
|
人工智能 自然语言处理 算法
AI时代的企业内训全景图:从案例到实战
作为一名扎根在HR培训领域多年的“老兵”,我越来越清晰地感受到,企业内训的本质其实是为企业持续“造血”。无论是基础岗的新人培训、技能岗的操作规范培训,还是面向技术中坚力量的高阶技术研讨,抑或是管理层的战略思维提升课,内训的价值都是在帮助企业内部提升能力水平,进而提高组织生产力,减少对外部资源的依赖。更为重要的是,在当前AI、大模型、Embodied Intelligence等新兴技术快速迭代的背景下,企业必须不断为人才升级赋能,才能在市场竞争中保持领先。
|
18天前
|
人工智能 数据可视化 专有云
阿里云飞天企业版获评2024年AI云典型案例
近日,由全球数字经济大会组委会主办、中国信息通信研究院和中国通信企业协会承办的“云·AI·计算国际合作论坛”作为2024全球数字经济大会系列活动之一,在北京举办。论坛以“智启云端,算绘蓝图”为主题,围绕云·AI·计算产业发展、关键技术、最佳实践等展开交流讨论。阿里云飞天企业版异构算力调度平台获评2024年AI云典型案例。
|
1月前
|
人工智能 供应链 安全
AI辅助安全测试案例某电商-供应链平台平台安全漏洞
【11月更文挑战第13天】该案例介绍了一家电商供应链平台如何利用AI技术进行全面的安全测试,包括网络、应用和数据安全层面,发现了多个潜在漏洞,并采取了有效的修复措施,提升了平台的整体安全性。
|
18天前
|
人工智能 Kubernetes Cloud Native
荣获2024年AI Cloud Native典型案例,阿里云容器产品技术能力获认可
2024全球数字经济大会云·AI·计算创新发展大会,阿里云容器服务团队携手客户,荣获“2024年AI Cloud Native典型案例”。
|
1月前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
|
2月前
|
人工智能 小程序 搜索推荐
成功案例分享|使用AI运动识别插件+微搭,快速搭建AI美体运动小程序
今天给大家分享一个最近使用我们的“AI运动识别小程序插件”+“微搭”搭建小程序的经典案例。
成功案例分享|使用AI运动识别插件+微搭,快速搭建AI美体运动小程序
|
5月前
|
人工智能 Cloud Native API
Higress 重磅更新:AI 能力全面开源,云原生能力再升级
Higress 最新的 1.4 版本基于为通义千问,以及多家云上 AGI 厂商客户提供 AI 网关的积累沉淀,开源了大量 AI 原生的网关能力。同时也在 Ingress、可观测、流控等云原生能力上做了全方位升级。
21417 279
|
2月前
|
人工智能 自然语言处理 数据挖掘
利用小蜜蜂AI智能问答ChatGPT+AI高清绘图生成图文故事案例
利用小蜜蜂AI智能问答ChatGPT+AI高清绘图生成图文故事案例
61 1
|
4月前
|
人工智能 PyTorch 算法框架/工具
Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
【8月更文挑战第6天】Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
|
4月前
|
人工智能 Linux Anolis