YOLOv5改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)

简介: YOLOv5改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)

一、本文介绍

本文给大家带来的改进机制是反向残差块网络EMO,其的构成块iRMB在之前我已经发过了,同时进行了二次创新,本文的网络就是由iRMB组成的网络EMO,所以我们二次创新之后的iEMA也可以用于这个网络中,再次形成二次创新,同时本文的主干网络为一种轻量级的CNN架构,在开始之前给大家推荐一下我的专栏,本专栏每周更新3-10篇最新前沿机制 | 包括二次创新全网无重复,以及融合改进,更有包含我所有的YOLOv5仓库集成文件(文件内集成我所有的改进机制全部注册完毕可以直接运行)和交流群和视频讲解提供给大家。

欢迎大家订阅我的专栏一起学习YOLO!

image.png

二、EMO模型原理


image.png


Efficient MOdel (EMO)模型基于反向残差块(Inverted Residual Block, IRB),这是一种轻量级CNN的基础架构,同时融合了Transformer的有效组件。通过这种结合,EMO实现了一个统一的视角来处理轻量级模型的设计,创新地将CNN和注意力机制相结合。此外,EMO模型在各种基准测试中展示出优越的性能,特别是在ImageNet-1K、COCO2017和ADE20K等数据集上的表现。该模型不仅在效率和精度方面取得了平衡,而且在轻量级设计方面实现了突破。

EMO的基本原理可以分为以下几个要点:

1. 反向残差块(IRB)的应用:IRB作为轻量级CNN的基础架构,EMO将其扩展到基于注意力的模型。

2. 元移动块(MMB)的抽象化:EMO提出了一种新的轻量级设计方法,即单残差的元移动块(MMB),这是从IRB和Transformer的有效组件中抽象出的。

3. 现代反向残差移动块(iRMB)的构建:基于简单但有效的设计标准,EMO推导出了iRMB,并以此构建了类似于ResNet的高效模型(EMO)。

在下面这个图中,我们可以看到EMO模型的结构细节:


image.png

左侧是一个抽象统一的元移动块(Meta-Mobile Block),它融合了多头自注意力机制(Multi-Head Self-Attention)、前馈网络(Feed-Forward Network)和反向残差块(Inverted Residual Block)。这个复合模块通过不同的扩展比率和高效的操作符进行具体化。

右侧展示了一个类似于ResNet的EMO模型架构,它完全由推导出的iRMB组成。图中突出了EMO模型中微操作组合(如深度可分卷积、窗口Transformer等)和不同尺度的网络层次,这些都是用于分类(CLS)、检测(Det)和分割(Seg)任务的。这种设计强调了EMO模型在处理不同下游任务时的灵活性和效率。

目录
相关文章
|
1月前
|
存储 数据可视化 API
重磅干货,免费三方网络验证[用户系统+CDK]全套API接口分享教程。
本套网络验证系统提供全面的API接口,支持用户注册、登录、数据查询与修改、留言板管理等功能,适用于不想自建用户系统的APP开发者。系统还包含CDK管理功能,如生成、使用、查询和删除CDK等。支持高自定义性,包括20个自定义字段,满足不同需求。详细接口参数及示例请参考官方文档。
|
2月前
|
弹性计算 Kubernetes 网络协议
阿里云弹性网络接口技术的容器网络基础教程
阿里云弹性网络接口技术的容器网络基础教程
阿里云弹性网络接口技术的容器网络基础教程
|
2月前
|
机器学习/深度学习 API 算法框架/工具
残差网络(ResNet) -深度学习(Residual Networks (ResNet) – Deep Learning)
残差网络(ResNet) -深度学习(Residual Networks (ResNet) – Deep Learning)
86 0
|
3月前
|
网络协议 开发者 Python
网络编程小白秒变大咖!Python Socket基础与进阶教程,轻松上手无压力!
在网络技术飞速发展的今天,掌握网络编程已成为开发者的重要技能。本文以Python为工具,带你从Socket编程基础逐步深入至进阶领域。首先介绍Socket的概念及TCP/UDP协议,接着演示如何用Python创建、绑定、监听Socket,实现数据收发;最后通过构建简单的聊天服务器,巩固所学知识。让初学者也能迅速上手,成为网络编程高手。
83 1
|
4月前
|
API
【threejs教程】让你的场景及物体拥有质感:聊聊threejs中的基础网络材质!
【8月更文挑战第5天】threejs中的基础网络材质教程
75 3
|
3月前
|
编解码 Linux 开发工具
Linux平台x86_64|aarch64架构RTMP推送|轻量级RTSP服务模块集成说明
支持x64_64架构、aarch64架构(需要glibc-2.21及以上版本的Linux系统, 需要libX11.so.6, 需要GLib–2.0, 需安装 libstdc++.so.6.0.21、GLIBCXX_3.4.21、 CXXABI_1.3.9)。
|
4月前
|
计算机视觉
在yolov5项目中如何使用自带摄像机不用网络摄像机进行实时检测?
这篇文章讨论了在yolov5项目中,如何避免使用网络摄像机而改用自带的本地摄像机进行实时目标检测,并提供了解决摄像头打开错误的具体步骤和代码示例。
在yolov5项目中如何使用自带摄像机不用网络摄像机进行实时检测?
|
4月前
|
编解码 Linux 数据安全/隐私保护
Linux平台x86_64|aarch64架构如何实现轻量级RTSP服务
为满足在Linux平台(x86_64与aarch64架构)上实现轻量级RTSP服务的需求,我们开发了一套解决方案。该方案通过调用`start_rtsp_server()`函数启动RTSP服务,并设置端口号及认证信息。支持AAC音频和H.264视频编码,可推送纯音频、纯视频或音视频流。此外,还支持X11屏幕采集、部分V4L2摄像头采集、帧率/GOP/码率调整、摄像头设备选择与预览等功能。对于音频采集,支持alsa-lib和libpulse接口。整体设计旨在提供150-400ms的低延迟体验,适用于多种应用场景。
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
174 7