YOLOv5改进 | Conv篇 | 利用DualConv二次创新C3提出一种轻量化结构(降低参数30W)

简介: YOLOv5改进 | Conv篇 | 利用DualConv二次创新C3提出一种轻量化结构(降低参数30W)

一、本文介绍

本文给大家带来的改进机制是利用DualConv改进C2f提出一种轻量化的C2f,DualConv是一种创新的卷积网络结构,旨在构建轻量级的深度神经网络。它通过结合3×3和1×1的卷积核处理相同的输入特征映射通道,优化了信息处理和特征提取。DualConv利用组卷积技术高效排列卷积滤波器,大大降低了计算成本和参数数量。我们将其用于C2f的创新上能够大幅度的降低参数,还能够提升精度。欢迎大家订阅我的专栏一起学习YOLO!

image.png


专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制
专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

二、DualConv原理

image.png

2.1 DualConv的基本原理

DualConv是一种创新的卷积网络结构,旨在构建轻量级的深度神经网络。它通过结合3×3和1×1的卷积核处理相同的输入特征映射通道,优化了信息处理和特征提取。DualConv利用组卷积技术高效排列卷积滤波器,大大降低了计算成本和参数数量。这种结构可以广泛应用于各种卷积神经网络(CNN)模型,如VGG-16、ResNet-50等,适用于图像分类、目标检测和语义分割任务。

DualConv的基本原理可以总结如下:

1. 结合3×3和1×1卷积核:DualConv使用3×3和1×1的卷积核同时处理相同的输入特征映射通道,结合了两者的优点。

2. 利用组卷积技术:它通过组卷积技术高效地安排卷积滤波器,减少了计算成本和参数数量。


2.2 结合3×3和1×1卷积核

DualConv结构中结合3×3和1×1卷积核的设计理念是为了融合这两种卷积核的优点:3×3卷积核在进行特征提取时可以捕获更多的空间信息,而1×1卷积核则可以在不增加过多参数和计算复杂度的前提下,进行特征通道之间的交互和信息整合。

下图是DualConv结构的可视化,它展示了如何结合3×3和1×1的卷积核

image.png

在DualConv中,3×3卷积核被用于提取特征图的空间特征,而1×1卷积核则被用来整合这些特征,并减少模型的参数。

每个组内的卷积核都分别处理一部分输入通道,然后输出合并,从而在不同的特征图通道间实现信息的高效流动和整合。这种结构设计不仅保持了网络深度和表征能力,还降低了计算复杂度和模型大小,使其适用于资源受限的环境。


2.3 组卷积技术

DualConv运用组卷积技术,这是一种有效的参数和计算量减少策略。在组卷积中,输入和输出特征图被分成多个组,每组的卷积滤波器仅处理对应的输入特征图的一部分,这减少了模型的复杂度。DualConv利用这一技术来进一步降低计算成本,因为它允许组内的不同卷积核(如3×3和1×1)并行处理同一组输入通道,优化了信息流和特征提取效率,同时保持了网络的表征能力。

下面这幅图展示了DualConv的结构布局

image.png

图中描绘了3×3和1×1卷积核在输入特征映射通道上的并行布局。具体来说,这种布局利用了组卷积技术将卷积核分组,并在同一组内并行使用不同尺寸的卷积核。这样的设计有助于同时利用大尺寸卷积核的空间特征提取能力和小尺寸卷积核的计算效率,从而在保持准确性的同时减少模型的参数数量和计算成本。

目录
相关文章
|
3天前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
29 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
6月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | Conv篇 | 在线重参数化卷积OREPA助力二次创新(提高推理速度 + FPS)
YOLOv8改进 | Conv篇 | 在线重参数化卷积OREPA助力二次创新(提高推理速度 + FPS)
289 0
|
19天前
|
机器学习/深度学习 编解码 Java
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
《YOLO11目标检测创新改进与实战案例》专栏已更新100+篇文章,涵盖注意力机制、卷积优化、检测头创新、损失与IOU优化、轻量级网络设计等多方面内容。每周更新3-10篇,提供详细代码和实战案例,帮助您掌握最新研究和实用技巧。[专栏链接](https://blog.csdn.net/shangyanaf/category_12810477.html)
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
|
20天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
|
26天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
|
4月前
|
计算机视觉 网络架构
【YOLOv10改进-特征融合】YOLO-MS MSBlock : 分层特征融合策略
YOLOv10专栏介绍了YOLO-MS,一个优化多尺度目标检测的高效框架。YOLO-MS通过MS-Block和异构Kernel选择提升性能,平衡了计算复杂度与准确性。它在不依赖预训练的情况下,在COCO上超越同类模型,如YOLO-v7和RTMDet。MS-Block包含不同大小卷积的分支,用于增强特征表示。代码示例展示了MSBlock类的定义,用于处理不同尺度特征。该模块可应用于其他YOLO模型以提升性能。更多详情和配置参见相关链接。
|
6月前
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | Conv篇 | 在线重参数化卷积OREPA助力二次创新(提高推理速度 + FPS)
YOLOv5改进 | Conv篇 | 在线重参数化卷积OREPA助力二次创新(提高推理速度 + FPS)
146 2
|
6月前
|
计算机视觉 网络架构
【YOLOv8改进】MSBlock : 分层特征融合策略 (论文笔记+引入代码)
YOLO-MS是一个创新的实时目标检测器,通过多尺度构建块(MS-Block)和异构Kernel选择(HKS)协议提升多尺度特征表示能力。它在不依赖预训练权重和大型数据集的情况下,在MS COCO上超越了YOLO-v7和RTMDet,例如YOLO-MS XS版本(4.5M参数,8.7G FLOPs)达到了43%+的AP,比RTMDet高2%+。MS-Block利用分层特征融合和不同大小的卷积,而HKS协议根据网络深度调整Kernel大小,优化多尺度语义信息捕获。此外,YOLO-MS的模块化设计允许其作为即插即用的组件集成到其他YOLO模型中,提升它们的检测性能。
|
6月前
|
机器学习/深度学习 编解码 算法
YOLOv8改进 | 主干网络 | 增加网络结构增强小目标检测能力【独家创新——附结构图】
YOLOv8在小目标检测上存在挑战,因卷积导致信息丢失。本文教程将原网络结构替换为更适合小目标检测的backbone,并提供结构图。通过讲解原理和手把手教学,指导如何修改代码,提供完整代码实现,适合新手实践。文章探讨了大特征图对小目标检测的重要性,如细节保留、定位精度、特征丰富度和上下文信息,并介绍了FPN等方法。YOLOv8流程包括预处理、特征提取、融合和检测。修改后的网络结构增加了上采样和concatenate步骤,以利用更大特征图检测小目标。完整代码和修改后的结构图可在文中链接获取。
|
6月前
|
机器学习/深度学习
YOLOv5改进 | Conv篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约42W)
YOLOv5改进 | Conv篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约42W)
322 4
下一篇
无影云桌面