YOLOv5改进 | Conv篇 | 利用DualConv二次创新C3提出一种轻量化结构(降低参数30W)

简介: YOLOv5改进 | Conv篇 | 利用DualConv二次创新C3提出一种轻量化结构(降低参数30W)

一、本文介绍

本文给大家带来的改进机制是利用DualConv改进C2f提出一种轻量化的C2f,DualConv是一种创新的卷积网络结构,旨在构建轻量级的深度神经网络。它通过结合3×3和1×1的卷积核处理相同的输入特征映射通道,优化了信息处理和特征提取。DualConv利用组卷积技术高效排列卷积滤波器,大大降低了计算成本和参数数量。我们将其用于C2f的创新上能够大幅度的降低参数,还能够提升精度。欢迎大家订阅我的专栏一起学习YOLO!

image.png


专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制
专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

二、DualConv原理

image.png

2.1 DualConv的基本原理

DualConv是一种创新的卷积网络结构,旨在构建轻量级的深度神经网络。它通过结合3×3和1×1的卷积核处理相同的输入特征映射通道,优化了信息处理和特征提取。DualConv利用组卷积技术高效排列卷积滤波器,大大降低了计算成本和参数数量。这种结构可以广泛应用于各种卷积神经网络(CNN)模型,如VGG-16、ResNet-50等,适用于图像分类、目标检测和语义分割任务。

DualConv的基本原理可以总结如下:

1. 结合3×3和1×1卷积核:DualConv使用3×3和1×1的卷积核同时处理相同的输入特征映射通道,结合了两者的优点。

2. 利用组卷积技术:它通过组卷积技术高效地安排卷积滤波器,减少了计算成本和参数数量。


2.2 结合3×3和1×1卷积核

DualConv结构中结合3×3和1×1卷积核的设计理念是为了融合这两种卷积核的优点:3×3卷积核在进行特征提取时可以捕获更多的空间信息,而1×1卷积核则可以在不增加过多参数和计算复杂度的前提下,进行特征通道之间的交互和信息整合。

下图是DualConv结构的可视化,它展示了如何结合3×3和1×1的卷积核

image.png

在DualConv中,3×3卷积核被用于提取特征图的空间特征,而1×1卷积核则被用来整合这些特征,并减少模型的参数。

每个组内的卷积核都分别处理一部分输入通道,然后输出合并,从而在不同的特征图通道间实现信息的高效流动和整合。这种结构设计不仅保持了网络深度和表征能力,还降低了计算复杂度和模型大小,使其适用于资源受限的环境。


2.3 组卷积技术

DualConv运用组卷积技术,这是一种有效的参数和计算量减少策略。在组卷积中,输入和输出特征图被分成多个组,每组的卷积滤波器仅处理对应的输入特征图的一部分,这减少了模型的复杂度。DualConv利用这一技术来进一步降低计算成本,因为它允许组内的不同卷积核(如3×3和1×1)并行处理同一组输入通道,优化了信息流和特征提取效率,同时保持了网络的表征能力。

下面这幅图展示了DualConv的结构布局

image.png

图中描绘了3×3和1×1卷积核在输入特征映射通道上的并行布局。具体来说,这种布局利用了组卷积技术将卷积核分组,并在同一组内并行使用不同尺寸的卷积核。这样的设计有助于同时利用大尺寸卷积核的空间特征提取能力和小尺寸卷积核的计算效率,从而在保持准确性的同时减少模型的参数数量和计算成本。

目录
相关文章
|
9天前
|
机器学习/深度学习
苹果发布高效双EMA梯度优化方法,适配Transformer、Mamba模型
苹果公司在arXiv上发布论文《The AdEMAMix Optimizer: Better, Faster, Older》,提出了一种基于双指数移动平均(EMA)的新型优化器AdEMAMix。该优化器通过使用快速和慢速EMA,同时利用近期和远期梯度信息,显著提升了模型训练的速度和效果。实验表明,AdEMAMix在语言建模和图像分类等任务上表现出色,尤其在大型语言模型的训练中,相比传统优化器如AdamW,训练效率提高了95%。
57 32
|
7月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | Conv篇 | 在线重参数化卷积OREPA助力二次创新(提高推理速度 + FPS)
YOLOv8改进 | Conv篇 | 在线重参数化卷积OREPA助力二次创新(提高推理速度 + FPS)
310 0
|
7月前
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | Conv篇 | 在线重参数化卷积OREPA助力二次创新(提高推理速度 + FPS)
YOLOv5改进 | Conv篇 | 在线重参数化卷积OREPA助力二次创新(提高推理速度 + FPS)
157 2
|
5月前
|
机器学习/深度学习 大数据 计算机视觉
【YOLOv8改进 - 特征融合】 GELAN:YOLOV9 通用高效层聚合网络,高效且涨点
YOLOv8专栏探讨了深度学习中信息瓶颈问题,提出可编程梯度信息(PGI)和广义高效层聚合网络(GELAN),改善轻量级模型的信息利用率。GELAN在MS COCO数据集上表现优越,且PGI适用于不同规模的模型,甚至能超越预训练SOTA。[论文](https://arxiv.org/pdf/2402.13616)和[代码](https://github.com/WongKinYiu/yolov9)已开源。核心组件RepNCSPELAN4整合了RepNCSP块和卷积。更多详情及配置参见相关链接。
|
7月前
|
机器学习/深度学习 编解码 算法
YOLOv8改进 | 主干网络 | 增加网络结构增强小目标检测能力【独家创新——附结构图】
YOLOv8在小目标检测上存在挑战,因卷积导致信息丢失。本文教程将原网络结构替换为更适合小目标检测的backbone,并提供结构图。通过讲解原理和手把手教学,指导如何修改代码,提供完整代码实现,适合新手实践。文章探讨了大特征图对小目标检测的重要性,如细节保留、定位精度、特征丰富度和上下文信息,并介绍了FPN等方法。YOLOv8流程包括预处理、特征提取、融合和检测。修改后的网络结构增加了上采样和concatenate步骤,以利用更大特征图检测小目标。完整代码和修改后的结构图可在文中链接获取。
|
7月前
|
机器学习/深度学习
YOLOv5改进 | Conv篇 | 结合Dual思想利用HetConv创新一种全新轻量化结构CSPHet(参数量下降20W)
YOLOv5改进 | Conv篇 | 结合Dual思想利用HetConv创新一种全新轻量化结构CSPHet(参数量下降20W)
165 3
|
7月前
|
机器学习/深度学习
YOLOv5改进 | Conv篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约42W)
YOLOv5改进 | Conv篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约42W)
347 4
|
7月前
|
机器学习/深度学习
YOLOv8改进 | Conv篇 | 结合Dual思想利用HetConv创新一种全新轻量化结构CSPHet(参数量下降70W)
YOLOv8改进 | Conv篇 | 结合Dual思想利用HetConv创新一种全新轻量化结构CSPHet(参数量下降70W)
175 0
|
7月前
|
机器学习/深度学习
YOLOv8改进 | Conv篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约100W)
YOLOv8改进 | Conv篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约100W)
1188 0
|
机器学习/深度学习 计算机视觉 索引
Backbone | 谷歌提出LambdaNetworks:无需注意力让网络更快更强(文末获取论文源码)(一)
Backbone | 谷歌提出LambdaNetworks:无需注意力让网络更快更强(文末获取论文源码)(一)
180 1