YOLOv8改进 | 损失函数篇 | QualityFocalLoss质量焦点损失(含代码 + 详细修改教程)

简介: YOLOv8改进 | 损失函数篇 | QualityFocalLoss质量焦点损失(含代码 + 详细修改教程)

一、本文介绍

本文给大家带来的改进机制是QualityFocalLoss,其是一种CLS分类损失函数,它的主要创新是将目标的定位质量(如边界框与真实对象的重叠度量,例如IoU得分)直接融合到分类损失中,形成一个联合表示。这种方法能够解决传统目标检测中分类与定位任务之间存在的不一致性问题。QFL通过为每个类别的得分赋予根据定位质量调整的权重,使得检测模型在训练过程中能够更加关注那些难以定位或分类的样本。

在开始之前给大家推荐一下我的专栏,本专栏每周更新3-10篇最新前沿机制 | 包括二次创新全网无重复,以及融合改进(大家拿到之后添加另外一个改进机制在你的数据集上实现涨点即可撰写论文),还有各种前沿顶会改进机制 |,更有包含我所有附赠的文件(文件内集成我所有的改进机制全部注册完毕可以直接运行)和交流群和视频讲解提供给大家。

欢迎大家订阅我的专栏一起学习YOLO!

image.png


专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制
专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、Quality Focal Loss原理


image.png

2.1 Quality Focal Loss的基本原理

Quality Focal Loss (QFL) 是一种用于目标检测的改进损失函数。它的主要创新是将目标的定位质量(如边界框与真实对象的重叠度量,例如IoU得分)直接融合到分类损失中,形成一个联合表示。这种方法能够解决传统目标检测中分类与定位任务之间存在的不一致性问题。QFL通过为每个类别的得分赋予根据定位质量调整的权重,使得检测模型在训练过程中能够更加关注那些难以定位或分类的样本。

Quality Focal Loss(QFL)的基本原理可以分为以下几个要点:

1. 联合表示法: QFL将定位质量(如IoU分数)与分类得分融合为一个联合表示,这种表示在训练和推理过程中保持一致性,有助于解决在训练和测试阶段对质量估计和分类得分使用不一致的问题。

2. 连续标签支持: 传统的Focal Loss仅支持离散的{0, 1}标签,而QFL扩展了这一概念,支持连续的标签(如IoU分数),从0到1的浮点数,更好地反映了实际数据中的情况。

3. 动态调整难度: QFL通过动态调整损失函数,使得模型在训练过程中更多地关注难以分类或定位的样本,从而提高模型的整体性能。

2.2 联合表示法

联合表示法是Quality Focal Loss中的核心概念,它将分类得分和定位质量(例如IoU得分)整合到单一的预测向量中。这种表示方法解决了传统目标检测方法中训练和推理阶段质量估计与分类评分分离使用的不一致性问题。具体来说,它允许模型在预测分类的同时,估计每个检测框的定位质量,从而在非最大抑制(NMS)处理中提供更准确的排序得分,改善检测性能。

下图展示了传统方法(Existing Work)和我们的方法之间在分类和定位质量估计方面的不同表示形式的对比:

image.png

图(a)中,即现有工作,训练和测试阶段分别独立处理分类得分、边界框回归和IoU/centerness得分,这导致了训练和推理之间的不一致性。

而在图(b)中,我们的方法则将分类得分和IoU得分结合为一个联合表示,即在训练和测试时都使用的分类与IoU联合得分。这种联合表示提高了训练和推理之间的一致性,与Quality Focal Loss的基本原理中提到的“联合表示法”紧密相关。在Quality Focal Loss中,通过这种方式,模型能够在训练过程中考虑到每个样本的定位质量,使得损失函数能够更加关注那些定位或分类困难的样本。

2.3 连续标签支持

连续标签支持是指在质量焦点损失(Quality Focal Loss, QFL)中,分类的输出标签不再是传统的0或1(如在one-hot编码中),而是可以取任意在0到1之间的连续值。这些连续值代表了目标定位的质量,通常是指与真实边界框的交并比(IoU)。通过这种方式,QFL可以直接在损失函数中整合定位质量,使得损失函数能够对定位不准确的样本施加更大的权重,从而激励模型学习更准确地预测边界框。

下面这张图比较了传统目标检测方法和提出的广义焦点损失(GFL)方法之间的差异:

image.png

在传统方法(Existing Work)中,分类分支使用one-hot标签进行正类和负类的区分,而回归分支则采用Dirac delta分布进行边界框的预测。相比之下,GFL方法引入了质量焦点损失(QFL)和分布焦点损失(DFL)。QFL通过软one-hot标签(IoU标签)进行学习,这些标签反映了边界框的定位质量。同时,DFL使用一般分布

image.png

来模拟边界框位置的概率分布。


2.4 动态调整难度

动态调整难度是质量焦点损失(Quality Focal Loss, QFL)的一个特点,它允许模型在训练过程中更多地关注那些难以分类或定位的样本。这是通过调整损失函数中的一个参数来实现的,该参数会增加对模型预测不确定性较高的样本的损失值,使得模型更加集中于这些难以预测的样本上。这种方法旨在提高模型对困难样本的敏感性,帮助模型更加精确地进行分类和定位,尤其是在面对复杂或模糊的检测场景时。

下面这张图展示了Quality Focal Loss (QFL)在不同β参数下的损失曲线,以及不同分布对于相同积分目标的表示和实际边界框回归目标的分布直方图:

image.png


图(a)展示的QFL损失曲线与基本原理中的“动态调整难度”相关,因为它展示了如何通过调整β参数来调节模型对于难以预测样本的关注度。

图(b)展示了不同的概率分布如何针对相同的积分目标(即回归目标)进行调整,这与“表示任意分布的边界框位置”的原理有关。

图(c)则是实际数据集中回归目标的分布,这有助于我们理解和验证QFL在实际应用中的效果。

目录
相关文章
|
6月前
|
编解码 并行计算 算法
除了NMS参数,还有哪些因素会影响YOLOv3模型的检测性能?
除了NMS参数,还有哪些因素会影响YOLOv3模型的检测性能?
|
1月前
|
机器学习/深度学习 存储 人工智能
梯度累积的隐藏陷阱:Transformer库中梯度累积机制的缺陷与修正
在本地微调大规模语言模型时,由于GPU显存限制,通常采用梯度累积技术来模拟大批次训练。然而,实际研究表明,梯度累积方法在主流深度学习框架中会导致模型性能显著下降,尤其是在多GPU环境中。本文详细探讨了梯度累积的基本原理、应用场景及存在的问题,并通过实验验证了修正方案的有效性。研究指出,该问题可能在过去多年中一直存在且未被发现,影响了模型的训练效果。
95 4
梯度累积的隐藏陷阱:Transformer库中梯度累积机制的缺陷与修正
|
2月前
|
机器学习/深度学习
【LLM提示技术:零样本提示、少样本提示】
本文介绍了零样本和少样本提示技术在大型语言模型中的应用。零样本提示指模型无需示例即可完成任务,而少样本提示则通过提供少量示例提升模型的表现。文中详细探讨了这两种技术的特点与限制,并通过具体示例说明了其在不同任务中的效果。研究表明,指令调整和人类反馈可增强模型性能,而对于复杂任务,则需更高级的提示工程,如思维链提示。
312 0
【LLM提示技术:零样本提示、少样本提示】
|
4月前
|
机器学习/深度学习 索引 Python
。这不仅可以减少过拟合的风险,还可以提高模型的准确性、降低计算成本,并帮助理解数据背后的真正含义。`sklearn.feature_selection`模块提供了多种特征选择方法,其中`SelectKBest`是一个元变换器,可以与任何评分函数一起使用来选择数据集中K个最好的特征。
。这不仅可以减少过拟合的风险,还可以提高模型的准确性、降低计算成本,并帮助理解数据背后的真正含义。`sklearn.feature_selection`模块提供了多种特征选择方法,其中`SelectKBest`是一个元变换器,可以与任何评分函数一起使用来选择数据集中K个最好的特征。
|
4月前
|
机器学习/深度学习 自然语言处理 区块链
Lookback Lens:用注意力图检测和减轻llm的幻觉
这篇论文的作者提出了一个简单的幻觉检测模型,其输入特征由上下文的注意力权重与新生成的令牌(每个注意头)的比例给出。
61 0
|
5月前
|
机器学习/深度学习 算法 网络架构
**深度学习中的梯度消失与爆炸影响模型训练。梯度消失导致输入层参数更新缓慢,梯度爆炸使训练不稳。
【6月更文挑战第28天】**深度学习中的梯度消失与爆炸影响模型训练。梯度消失导致输入层参数更新缓慢,梯度爆炸使训练不稳。解决办法包括:换激活函数(如ReLU)、权重初始化、残差连接、批量归一化(BN)来对抗消失;梯度裁剪、权重约束、RMSProp或Adam优化器来防止爆炸。这些策略提升网络学习能力和收敛性。**
58 0
|
6月前
|
计算机视觉
【YOLOv8改进】Inner-IoU: 基于辅助边框的IoU损失(论文笔记+引入代码)
YOLO目标检测专栏探讨了IoU损失的局限性,并提出创新改进。分析发现,不同尺度的辅助边框对高IoU和低IoU样本的回归有不同影响。因此,提出了Inner-IoU Loss,利用尺度因子ratio控制辅助边框大小以优化损失计算。实验验证了该方法能提升检测效果,增强泛化能力。创新点包括根据样本特性选择辅助边框尺度和Inner-IoU Loss的设计。更多详情见YOLO目标检测创新改进与实战案例专栏。
|
6月前
时间序列分析实战(十一):ECM误差修正模型
时间序列分析实战(十一):ECM误差修正模型
|
6月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】MPDIoU:有效和准确的边界框损失回归函数 (论文笔记+引入代码)
YOLO目标检测专栏介绍了YOLO的有效改进和实战案例,包括卷积、主干网络、注意力机制和检测头的创新。提出了一种新的边界框回归损失函数MPDIoU,它基于最小点距离,能更好地处理不同宽高比的预测框,包含重叠、中心点距离和尺寸偏差的全面考虑。MPDIoU损失函数在YOLACT和YOLOv7等模型上的实验显示了优于现有损失函数的性能。此外,还介绍了WIoU_Scale类用于计算加权IoU,以及bbox_iou函数实现不同IoU变体的计算。详细实现和配置可在相应链接中查阅。
|
6月前
|
机器学习/深度学习
大模型开发: 解释批量归一化以及它在训练深度网络中的好处。
批量归一化(BN)是2015年提出的加速深度学习训练的技术,旨在解决内部协变量偏移、梯度消失/爆炸等问题。BN通过在每层神经网络的小批量数据上计算均值和方差,进行标准化处理,并添加可学习的γ和β参数,保持网络表达能力。这样能加速训练,降低超参数敏感性,对抗过拟合,简化初始化。BN通过稳定中间层输入分布,提升了模型训练效率和性能。
174 3
下一篇
无影云桌面