YOLOv5改进 | 卷积篇 | 手把手教你添加动态蛇形卷积(管道结构检测适用于分割Seg)

简介: YOLOv5改进 | 卷积篇 | 手把手教你添加动态蛇形卷积(管道结构检测适用于分割Seg)

一、本文介绍

动态蛇形卷积的灵感来源于对管状结构的特殊性的观察和理解,在分割拓扑管状结构、血管和道路等类型的管状结构时,任务的复杂性增加,因为这些结构的局部结构可能非常细长和迂回,而整体形态也可能多变。

因此为了应对这个挑战,作者研究团队注意到了管状结构的特殊性,并提出了动态蛇形卷积(Dynamic Snake Convolution)这个方法。动态蛇形卷积通过自适应地聚焦于细长和迂回的局部结构,准确地捕捉管状结构的特征。这种卷积方法的核心思想是,通过动态形状的卷积核来增强感知能力,针对管状结构的特征提取进行优化。

总之动态蛇形卷积是一种针对管状结构分割任务的创新方法,在许多模型上添加针对一些数据集都能够有效的涨点,其具有重要性和广泛的应用领域。

动态蛇形卷积(Dynamic Snake Convolution)适用于多种模型,可以在多种模型上添加或替换该卷积,本文主要针对的改进模型是YOLOv5模型,并修复动态蛇形卷积官方代码中存在的BUG例如: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!修复,同时以此来进行示例帮助大家理解和掌握动态蛇形卷积和YOLOv5模型。

PS->如果你只想学会如何修改如何在yolov5中添加动态蛇形卷积而不想学习其原理则可以直接忽略此下大部分,直接跳读到官方代码Bug修复的章节阅读该章节和之后的章节即可。

二、动态蛇形卷积背景和原理

image.png

背景->动态蛇形卷积(Dynamic Snake Convolution)来源于临床医学,清晰勾画血管是计算流体力学研究的关键前提,并能协助放射科医师进行诊断和定位病变。在遥感应用中,完整的道路分割为路径规划提供了坚实的基础。无论是哪个领域,这些结构都具有细长和曲折的共同特征,使得它们很难在图像中捕捉到,因为它们在图像中的比例很小。因此,迫切需要提升对细长管状结构的感知能力,所以在这一背景下作者提出了动态蛇形卷积(Dynamic Snake Convolution)。

image.png

原理->上图展示了一个三维心脏血管数据集和一个二维远程道路数据集。这两个数据集旨在提取管状结构,但由于脆弱的局部结构和复杂的整体形态,这个任务面临着挑战。标准的卷积核旨在提取局部特征。基于此,设计了可变形卷积核以丰富它们的应用,并适应不同目标的几何变形。然而,由于前面提到的挑战,有效地聚焦于细小的管状结构是困难的。

由于以下困难,这仍然是一个具有挑战性的任务:

  1. 细小而脆弱的局部结构:如上面的图所示,细小的结构仅占整体图像的一小部分,并且由于像素组成有限,这些结构容易受到复杂背景的干扰,使模型难以精确地区分目标的细微变化。因此,模型可能难以区分这些结构,导致分割结果出现断裂。
  2. 复杂而多变的整体形态:上面的图片展示了细小管状结构的复杂和多变形态,即使在同一图像中也如此。不同区域中的目标呈现出形态上的变化,包括分支数量、分叉位置和路径长度等。当数据呈现出前所未见的形态结构时,模型可能会过度拟合已经见过的特征,导致在新的形态结构下泛化能力较弱。

为了应对上述障碍,提出了如下解决方案,其中包括管状感知卷积核、多视角特征融合策略和拓扑连续性约束损失函数。具体如下:

1. 针对细小且脆弱的局部结构所占比例小且难以聚焦的挑战,提出了动态蛇形卷积,通过自适应地聚焦于管状结构的细长曲线局部特征,增强对几何结构的感知。与可变形卷积不同,DSConv考虑到管状结构的蛇形形态,并通过约束补充自由学习过程,有针对性地增强对管状结构的感知。

2. 针对复杂和多变的整体形态的挑战,提出了一种多视角特征融合策略。在该方法中,基于DSConv生成多个形态学卷积核模板,从不同角度观察目标的结构特征,并通过总结典型的重要特征实现高效的特征融合。

3. 针对管状结构分割容易出现断裂的问题,提出了基于持久同调(Persistent Homology,PH)的拓扑连续性约束损失函数(TCLoss)。PH是一种从出现到消失的拓扑特征响应过程,能够从嘈杂的高维数据中获取足够的拓扑信息。相关的贝蒂数是描述拓扑空间连通性的一种方式。与其他方法不同,TCLoss将PH与点集相似性相结合,引导网络关注具有异常像素/体素分布的断裂区域,从拓扑角度实现连续性约束。

总结:为了克服挑战,提出了DSCNet框架,包括管状感知卷积核、多视角特征融合策略和拓扑连续性约束损失函数。DSConv增强了对细长曲线特征的感知,多视角特征融合策略提高了对复杂整体形态的处理能力,而TCLoss基于持久同调实现了从拓扑角度的连续性约束。

三、动态蛇形卷积的优势

为了提高对管状结构的性能,已经提出了各种方法,根据管状结构的形态设计了特定的网络架构和模块。具体如下:

1. 基于卷积核设计的方法:著名的扩张卷积(dilated convolution)和可变形卷积(deformable convolution)等方法被提出来处理卷积神经网络中固有的几何变换限制,并在复杂的检测和分割任务中取得了出色的表现。这些方法还被设计用于动态感知对象的几何特征,以适应具有可变形态的结构。例如,DUNet。

2. 基于形态学的方法:一些方法专注于利用形态学信息来处理管状结构。例如,形态学重建网络(Morphological Reconstruction Network)利用形态学重建操作来重建管状结构,从而实现更准确的分割。另外,形态学操作如开运算和闭运算也被广泛应用于处理管状结构。

3. 基于拓扑学的方法:拓扑学方法被用来处理管状结构的拓扑特征。例如,基于持久同调(Persistent Homology)的方法可以从高维数据中获取拓扑信息,并用于分析管状结构的连通性和形态特征。

总结:为了处理管状结构,已经提出了多种方法。这些方法包括基于卷积核设计的方法、基于形态学的方法和基于拓扑学的方法。这些方法的目标是通过设计适应管状结构形态的网络架构和模块,提高对管状结构的检测和分割性能。

优势->以上所述的方法都只是从单一的角度去分析,DSConv提出了一种多角度特征融合策略,从多个角度补充对重要特征的关注。在这个策略中,基于动态蛇形卷积(DSConv)生成多个形态学卷积核模板,从多个角度观察目标的结构特征,并通过总结关键的标准特征实现特征融合,从而提高我们模型的性能。

目录
相关文章
|
7月前
|
机器学习/深度学习 并行计算 算法
YOLOv8改进 | 卷积篇 |手把手教你添加动态蛇形卷积(Dynamic Snake Convolution)
YOLOv8改进 | 卷积篇 |手把手教你添加动态蛇形卷积(Dynamic Snake Convolution)
770 0
|
7月前
|
机器学习/深度学习 测试技术 Ruby
YOLOv8改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
YOLOv8改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
222 0
|
2月前
|
机器学习/深度学习 数据可视化 自动驾驶
YOLO11-seg分割:具有切片操作的SimAM注意力,魔改SimAM助力分割
本文创新地对SimAM注意力机制进行魔改,引入切片操作,显著提升了小目标特征提取能力。针对SimAM在计算整张特征图的像素差平均值时可能忽略小目标重要性的问题,通过切片操作增强了小目标的加权效果。实验结果显示,魔改后的SimAM在YOLO11-seg上的Mask mAP50从0.673提升至0.681,有效改善了小目标检测性能。
229 2
|
7月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv8改进-论文笔记】 AKConv(可改变核卷积):任意数量的参数和任意采样形状的即插即用的卷积
AKConv是一种可改变核卷积,旨在解决传统卷积的局限,包括固定大小的卷积窗口和卷积核尺寸。AKConv提供灵活的卷积核参数和采样形状,适应不同尺度特征。其创新点包括:1)支持任意大小和形状的卷积核;2)使用新算法确定初始采样位置;3)应用动态偏移调整采样位置;4)优化模型参数和计算效率。AKConv已应用于YOLOv8,提高网络性能。相关代码可在<https://github.com/CV-ZhangXin/AKConv>找到。
|
7月前
|
机器学习/深度学习 测试技术 Ruby
YOLOv5改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
YOLOv5改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
265 2
|
5月前
|
机器学习/深度学习 安全 固态存储
【YOLOv8改进 - 注意力机制】LS-YOLO MSFE:新颖的多尺度特征提取模块 | 小目标/遥感
YOLO系列目标检测模型的新发展,LS-YOLO专为滑坡检测设计。它使用多尺度滑坡数据集(MSLD)和多尺度特征提取(MSFE)模块,结合ECA注意力,提升定位精度。通过改进的解耦头,利用膨胀卷积增强上下文信息。在滑坡检测任务中,LS-YOLO相对于YOLOv5s的AP提高了2.18%,达到97.06%。论文和代码已开源。
|
6月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 卷积模块 | 在主干网络中添加/替换蛇形卷积Dynamic Snake Convolution
本专栏介绍的DSCNet采用蛇形动态卷积,增强对管状结构特征提取,尤其适合血管等弯曲目标。动态卷积核自适应调整,灵感来自蛇形曲线,能灵活捕捉不同尺度细节。论文及官方代码链接已提供,适用于提升目标检测的准确性和鲁棒性。
|
6月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | Neck | 在网络中替换c2f为融合蛇形卷积的C2f_DySnakeConv
本专栏介绍的DSCNet采用蛇形动态卷积,增强对细长弯曲结构(如血管)的特征提取。该卷积操作灵感来自蛇形曲线,能自适应调整权重以关注管状结构局部特征。通过动态卷积核,网络能更好地处理形状变异,提升目标检测的准确性和鲁棒性。
|
7月前
|
计算机视觉
【YOLOv8改进】 AFPN :渐进特征金字塔网络 (论文笔记+引入代码).md
YOLO目标检测专栏介绍了YOLO的有效改进和实战案例,包括AFPN——一种解决特征金字塔网络信息丢失问题的新方法。AFPN通过非相邻层直接融合和自适应空间融合处理多尺度特征,提高检测性能。此外,还展示了YOLOv8中引入的MPDIoU和ASFF模块的代码实现。详情可参考提供的专栏链接。
|
7月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进】 SPD-Conv空间深度转换卷积,处理低分辨率图像和小对象问题 (论文笔记+引入代码)
YOLO目标检测专栏探讨了CNN在低分辨率和小目标检测中的局限性,提出SPD-Conv新架构,替代步长卷积和池化层,通过空间到深度层和非步长卷积保持细粒度信息。创新点包括消除信息损失、通用设计和性能提升。YOLOv5和ResNet应用SPD-Conv后,在困难任务上表现优越。详情见YOLO有效改进系列及项目实战目录。